pam.array.distance accuracy(actual, predicted) # Source code in pam/array/distance.py 4 5 6 7 8 9 10def accuracy(actual: np.array, predicted: np.array) -> float: assert actual.shape == predicted.shape correct = 0 for ia, ib in zip(actual, predicted): if np.argmax(ia) == np.argmax(ib): correct += 1 return correct / len(predicted) cross_entropy(actual, predicted) # Source code in pam/array/distance.py 13 14 15 16 17def cross_entropy(actual: np.array, predicted: np.array) -> float: assert actual.shape == predicted.shape epsilon = 1e-12 predicted = np.clip(predicted, epsilon, 1.0 - epsilon) return -np.sum(actual * np.log(predicted)) / actual.shape[0]