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Notation
Symbol Represents

Time

Period

Mass matrix

Element mass matrix

Stiffness matrix

Element stiffness matrix

Geometric stiffness

Element geometric stiffness

Damping matrix

Displacement vector

Acceleration vector

Mode shape

 Eigenvalue or buckling load factor

diagonal eigenvalue matrix

Modal mass

Modal stiffness

Modal geometric stiffness

Force or force vector

Frequency

Angular frequency

Participation factor

Effective mass

Dynamic amplification

© Oasys Ltd 
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Rayleigh damping coefficients

Damping ratio

In general:

 scalar quantities are denoted by italics – e.g. mass or mass 

 vector quantities are denoted by lower case upright characters – e.g. displacements 

 matrix quantities are denoted by upper case, upright characters – e.g. stiffness 

© Oasys Ltd 
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Degrees of freedom
Active degrees of freedom

Before the stiffness matrix is assembled it is necessary to decide which degrees of freedom need
to be included in the solution.

The nodes can be categorised as follows:

 Inactive – the node does not exist.

 Non-structural – the node is not part of the structure (e.g. orientation node).

 Active – the node is part of the structure.

Likewise the degrees of freedom can be categorised as:

 Non-existent – this degree of freedom does not exist because the node is undefined.

 Inactive – this degree of freedom exists but is not used (considered like a restrained 
node).

 Restrained – the degree of freedom exists and is part of the structure but it is restrained 
and so it is not active in the stiffness matrix.

 Constrained – the degree of freedom is constrained (through being in a rigid constraint, 
or by a repeat freedom) to move relative to a primary degree of freedom and so it is not 
active in the stiffness matrix.

 Active – this degree of freedom is active in the stiffness matrix.

In setting up a list of degrees of freedom the following operations are carried out:

1. All the nodes are assumed to be inactive.

2. Look at elements attached to nodes to see which degrees of freedom are required.

3. Remove the degrees of freedom that are restrained by single point constraints or global 
constraints.

4. Remove the degrees of freedom that are constrained.

5. Remove degrees of freedom that have no local stiffness.

6. Number the degrees of freedom.

The degrees of freedom are made active based on the elements attached at the nodes. The 
degrees of freedom will depend on the element type: These are summarised in the table below:

Element Active degrees of freedom per node

Bar, Cable 1 translational

Rod 1 translational + 1 rotational

Beam 3 translational + 3 rotational

© Oasys Ltd 
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General spring 3 translational + 3 rotational

Mass 3 translational

Mass with inertia 3 translational + 3 rotational

2D plane stress

2D plane strain

Axisymmetric

Bilinear formulation

2 translational

Allman-Cook formulation

2 translational + 1 rotational

2D bending Mindlin

1 translational + 2 rotational

MITC

1 translational + 3 rotational

2D shell Mindlin

3 translational + 2 rotational

MITC

3 translational + 3 rotational

3D solid 3 translational

Degrees of Freedom with no Local Stiffness

It is possible to construct a model and find that there is no stiffness associated with particular 
degrees of freedom, either for translation or rotation. For example a model made up of shell 
elements in a general plane 6 degrees of freedom will be assigned per node, but there is only 
stiffness in 5 of these. There are a number of approaches to avoid this problem.

Geometry based automatic constraints

At each node in the structure the attached elements are identified. A pseudo stiffness matrix 
associated with rotations is set up with a value of one on the diagonal if the element is stiff in 
that direction or zero if there is no stiffness. All off-diagonal terms are set to zero. The pseudo 
stiffness is transformed into the nodal axis system (so the off-diagonal terms are, in general, no 
longer zero) and added to a nodal pseudo stiffness matrix.

Once this has been done for all the attached elements an eigenvalue analysis of the resulting 
pseudo stiffness is carried out to reveal the principal pseudo stiffnesses and their directions. If 
any of the principal pseudo stiffnesses are less that the pre-set “flatness tolerance” then those 
degrees of freedom are removed from the solution and an appropriate rotation to apply to the 
stiffness matrix at the node is stored.

© Oasys Ltd 
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Stiffness based automatic constraints

This is similar to the geometry based automatic constraints but instead of a value of one or zero 
assigned to degrees of freedom the actual stiffness matrix is used. The resulting stiffness matrix 
is the same as would result from restraining the whole model except from the rotations at the 
node of interest.

Again an eigenvalue analysis is carried out to reveal the principal stiffnesses and their directions. 
If any of the principal stiffnesses are less that the pre-set “stiffness tolerance” then those degrees
of freedom are removed from the solution and an appropriate rotation to apply to the stiffness 
matrix at the node is stored.

Artificial stiffness in shells

An alternative and cruder approach is to make sure that there is some stiffness in all directions 
by applying an artificial stiffness in the directions that are not stiff. This is done by constructing 
the element stiffness matrix for shell elements and then replacing the zeros on the leading 
diagonal with a value of 1/1000th of the minimum non-zero stiffness on the diagonal.

Since this approach introduces an artificial stiffness term that has not physical basis it should be 
used with care.

© Oasys Ltd 
2021 12



Oasys GSA

Analysis Options
Static Analysis

The static analysis is concerned with the solution of the linear system of equations for the 

displacements, , given the applied loads. The applied loads give the load or force vector, . 

The elements contribute stiffness, , so the system of equations is

When non-linear elements such as ties and struts are introduced the analysis is no-longer linear 
and become iterative. GSA uses initial stiffness method to avoid creation of global stiffness 
matrix at each iteration. The system of equation to be solved at each iteration

Where  is residual force from the previous iteration  and  is the change in 
displacement for current iteration. This method sometimes requires a large number of iterations
to converge to the solution and this may offset the advantage of constant stiffness. To improve 
the convergence speed acceleration scheme is applied to the solution strategy

The acceleration scheme estimates the ratio of the original tangent stiffness to local secant 
stiffness using the successive change in the displacements. To avoid inaccurate estimate the 
ratio, the acceleration scheme is only applied at every alternative iteration.

Static P-delta Analysis

The static P-delta analysis is similar to the static except that a first pass is done to calculate the 
forces in the elements. From these forces the differential stiffness can be calculated. The 
stiffness of the structure can therefore be modified to take account of the loading and the 
displacements are then the solution of

The options allow for

 A single load case to be used as the P-delta load case

 Each load case to be its own P-delta load case

In the first case the first pass of the analysis solves

© Oasys Ltd 
2021 13



Oasys GSA

for the P-delta case: then for all the load vectors

is solved for all displacements

In the second case there is a one for correspondence between P-delta load case and analysis 
case so

then for each case

Modal Analysis

The modal dynamic analysis is concerned with the calculation of the natural frequencies and the 
mode shapes of the structure. As in the static analysis a stiffness matrix can be constructed, but 
in a modal dynamic analysis a mass matrix is also constructed. The free vibration of the model is 
then given by

The natural frequencies are then given when

The eigenvalue problem is then

Or across multiple eigenvalues

where  are the eigenpairs – eigenvalues (the diagonal terms are the square of the free 
vibration frequencies) and the eigenvectors (the columns are the mode shapes) respectively.

Modal P-delta Analysis

The modal P-delta is similar to the normal modal analysis but takes into account that loading on 
the structure will affect its natural frequencies and mode shapes. In the same was as a static P-
delta analysis a first pass is carried out from which the differential stiffness can be calculated. 
This is used to modify the stiffness matrix so the eigenproblem is modified to

© Oasys Ltd 
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Ritz Analysis

Often the use of modal analysis requires a large number of modes to be calculated in order to 
capture the dynamic characteristics of the structure. This is particularly the case when the 
horizontal and vertical stiffnesses of the structure are significantly different (while the mass is 
the same). One way to circumvent this problem is to use Ritz (or Rayleigh-Ritz) analysis which 
yield approximate eigenvalues. While these are approximate they have some useful 
characteristics.

The eigenvalues (natural frequencies) are upper bounds to the true eigenvalues

The mode shapes are linear combinations of the exact eigenvectors

The number of Ritz vectors required to capture the dynamic characteristics of the structure is 
usually significantly less that that required for a proper eigenvalue analysis.

Ritz analysis method

A set of trial vectors based initially on gravity loads in each of the x/y/z directions. The 
subsequent trial vectors are created from these with the condition that they are orthogonal to 
the previous vectors. The assumption is that we can get approximations to the eigenvectors by 
taking a linear combination of the trial vectors.

So for trial vectors

Let

and if the approximation to the eigenvalue is , the residual associated with the approximating 

pair  is given by

The Rayleigh-Ritz method requires the residual vector be orthogonal to each of the trial vectors, 
so

Substituting for  from above gives

or

© Oasys Ltd 
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with

This eigenproblem is then solved for the eigenpairs  and then the approximate 
eigenvectors are evaluated from

Ritz trial vectors

The algorithm as applied in a single direction is as follows:

Create a load vector  corresponding to a gravity load in the direction of interest

Solve for first vector

 solve for 

normalize 

Solve for additional vectors

 solve for 

for 

orthogonalize 

normalize 

Modal Buckling Analysis

The problem in this case is to determine critical buckling loads (Eulerian buckling load) of the 
structure. The assumption is that the differential stiffness matrix is a linear function of applied 
load. The aim of the buckling analysis is to calculate the factor that can be applied to load before 
the structure buckles. At buckling the determinant of the sum of the elastic stiffness and the 
critical differential (or geometric) stiffness is zero.

Using the assumption of differential stiffness a linear function of loads gives

© Oasys Ltd 
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so the equation is

and the eigenvalue problem is then

Model Stability Analysis

When a structural model is ill-conditioned (as reported by the condition number estimate) it 
could be a result modelling errors in the model. These errors could be of two types:

 Some elements may not be well connected or could be badly restrained, e.g. beam 
elements spinning about their axis.

 Some elements very stiff compared with all other elements in the model, e.g. a beam 
element of short length but a large section.

To detect such errors, model stability analysis, which is a qualitative analysis intended to reveal 
the causes of ill conditioning in models, can be useful. The analysis calculates the smallest and 
largest eigenvalues and corresponding eigenvectors of the stiffness matrix, i.e. it solves the 
problem

for eigenpairs . For each mode that is requested, element virtual energies are calculated 
for each element in the model. These are defined as follows.

The virtual strain energy for large eigenpairs where

and virtual kinetic energy for small eigenpairs, defined as

The virtual energies can be plotted onto elements as contours. Typically, for an ill conditioned 
model, a handful of elements will have large relative values of virtual energies.

 Where the ill conditioning is caused from badly restrained elements, such elements will 
have large relative virtual kinetic energies.

 If the ill conditioning is from the presence of elements with disproportionately large 
stiffnesses, then these elements will have large virtual strain.

The analysis also reports, in increasing order, the eigenvalues computed. For the case of badly 
restrained elements, there is usually a gap in the smallest eigenvalues. The number of smallest 
eigenpairs to be examined is given by the number of eigenvalues between zero and the gap.

© Oasys Ltd 
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Non-linear Static Analysis

The non-linear static solver works using the dynamic relaxation method. This is an iterative 
method which simulates a process of damped vibration in small time increments (cycles). This is 
a specialisation of the explicit time-history solution method. Fictitious masses and inertias are 
computed for each free node.

At each cycle the forces and moments which elements exert on each node are summed for the 
current displacements. The linear and angular accelerations of each node are computed from its 
fictitious mass and inertia, damping is applied to the node’s current linear and angular velocities 
and the node’s shifts and rotations are calculated for the cycle.

This process is repeated until it is terminated by the user or the solution has converged (the out-
of-balance forces and moments (residuals) at every free node are less than target values).

If the damping is too high or the fictitious masses and inertias of the nodes are too large, their 
shifts and rotations at each cycle will be very small and many cycles will be needed to achieve a 
result. If on the other hand the damping is too low or the masses and inertias are too small, the 
simulated damped vibration becomes unstable.

The two cases of an unstable structure and of unstable simulated damped vibration can be 
distinguished by inspecting the results. When the structure is unstable, the element forces 
change little from cycle to cycle and the shifts of the nodes at each cycle may be very large but 
do not vary significantly from cycle to cycle. If the simulated damped vibration is unstable, the 
forces and nodal displacements oscillate wildly between cycles and usually increase to enormous
values. The third case of stable simulated damped vibration converging to a stable solution can 
be recognised because the residuals and the shifts of the nodes decrease overall from cycle to 
cycle.

It should be noted that very few structures are so unstable that they do not eventually converge 
to a solution. Generally secondary effects become operative with large deflections and allow the 
structure to reach some kind of equilibrium.

Dynamic Relaxation Analysis

Dynamic relaxation is an analysis method for non-linear statically loaded structures using a 
direct integration dynamic analysis technique. In dynamic relaxation analysis it is assumed that 
the loads are acting on the structure suddenly, therefore the structure is excited to vibrate 
around the equilibrium position and eventually come to rest on the equilibrium position. In 
order to simulate the vibration, mass and inertia are needed for each of the free nodes. In 
dynamic relaxation analysis, artificial mass and inertia are used which are constructed according 
to the nodal translational stiffness and rotational stiffness. If there is no damping applied to the 
structure, the oscillation of the structure will go forever, therefore, damping is required to allow 
the vibration to come to rest at equilibrium position. There are two types of damping: viscous 
damping and kinetic damping. Kinetic damping is an artificial damping which will reposition the 
nodes according to the change of system kinetic energy.

© Oasys Ltd 
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Damping

There are two types of viscous damping, one is viscous damping and one is artificial viscous 
damping. Viscous damping will apply the specified (or automatically selected) percentage of the 
critical damping to the system. Artificial viscous damping will artificially reduce the velocity at 
each cycle by the specified (or automatically selected) percentage of velocity in previous cycle. 
Once artificial viscous damping is used, kinetic damping will be disabled automatically. By 
applying one or both of these artificial damping methods, the vibration will gradually come to 
rest at the equilibrium position and this will be the solution given by dynamic-relaxation analysis.

The structure below shows the effect of viscous damping on the dynamic relaxation analysis 
process. The oscillation of the structure eventually comes to rest at the static equilibrium 
position if viscous damping is applied. The problem with viscous damping is that it is not an easy 
task to estimate the critical damping of the structure.

Kinetic damping is unrelated to conventional concepts of damping used in structural dynamic 
analysis. It is an artificial control to reduce the magnitude of the vibration in order to make it 
come to rest. It is based on the behaviour of structures with only one degree of freedom or the 
vibration of a multiple degree of freedom structure in a single mode. For these cases it is known 
that the structure’s kinetic energy reaches a maximum at the static equilibrium position.

© Oasys Ltd 
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The structure’s kinetic energy is monitored in the analysis at each time increment. The Kinetic 
energy increases as the nodes approach equilibrium position and starts to decrease once the 
nodes are away from equilibrium position. Once the kinetic energy starts to decrease, an 
estimate of the equilibrium position of the nodes can be interpolated from the previous nodal 
positions and kinetic energies.

At this point the kinetic damping process is applied. The vibration is stopped and the nodes 
repositioned to correspond to the maximum kinetic energy. Assuming the relationship between 
structural kinetic energy and time is a parabola, then the moment at which the kinetic energy 
peaked can be calculated. Based on the previous nodal displacements and rotations, the 
equilibrium positions of the nodes can be estimated. After shifting the nodes to their optimum 
positions, the analysis will restart again by resetting the time, speed, and acceleration to be zero.

Since it is unlikely that a multiple degree of freedom structure will vibrate in a single mode, it is 
impossible to find the equilibrium position just by reaching the maximum kinetic energy of the 
structure once or twice. Nevertheless, previous experience has shown that the use of kinetic 
damping is very efficient in searching for the equilibrium position in dynamic relaxation analysis.

Solution Process

The following steps are used in a dynamic relaxation analysis.

1. Compute equivalent nodal forces and moments. In this process, member loads are 

converted into nodal force or moments. These are the forces that initiate vibration.

2. Construct dummy mass and dummy inertia for the unrestrained (active) nodes according

to the translational and rotational stiffness of the members at the nodes

3. Compute the acceleration, speed, and displacement for each node at each cycle.

4. Compute a new nodal position and rotation for each node at each cycle; update the 

nodal stiffness and member force acting on the nodes.

© Oasys Ltd 
2021 20



Oasys GSA

5. Check the force and moment residuals at each node at the current position.

6. If no residual exceeds the limit, the analysis is considered to have converged and the 

final position is considered as the equilibrium position of the structure.

7. If any residual is not satisfied, the analysis is continued to the next step.

8. Compute the total kinetic energy of the structure. If the kinetic energy at a cycle 

overshoots the maximum, it is considered that the equilibrium position has been passed.

Therefore, all nodes will be re-positioned so that they are closer to the equilibrium 

position. Reset the speed and acceleration to be zero and let the structure start to 

vibrate again from the new position.

9. After analysis has been converged, the element forces, moments and stresses are 

calculated according to the final equilibrium position of the nodes.

Fictitious masses and inertia

To speed up and simplify dynamic relaxation analysis, fictitious (dummy) masses and inertia 
rather than real masses and inertia are used in dynamic relaxation analysis. The fictitious 
masses and inertia are generated automatically in the solver. However, fictitious masses and 
inertia can be adjusted pre and during analysis by applying dummy mass and inertia factors 
and/or dummy mass and inertia power.

The fictitious masses and inertias calculated by the program are designed to be small enough for
convergence to be reasonably fast but large enough to prevent nodes shifting too much in one 
cycle, which causes the solution method to become unstable. To this end, it is logical to take the 
fictitious masses and inertia proportional to the nodal translational stiffness and rotational 
stiffness respectively. From previous experience, it is found that the best estimate of the 
fictitious masses and inertia are two times the nodal translational stiffness and rotational 
stiffness respectively and they are calculated as follows

 Fictitious mass of a node = 2 × sum of translational stiffness of the elements connected 

to the node

 Fictitious inertia of a node = 2 × sum of rotational stiffness of the elements connected to 

the node

Control parameters

The iterative dynamic relaxation process continues until convergence criteria (unbalanced nodal 
force and moment) are met. If this does not happen, the iteration will continue for a maximum 
number of cycles, or analysis time in minutes.

It is almost impossible to achieve 100% accurate results in non-linear analysis, so an acceptable 
residual (tolerance) force and moment should be specified. The residual may be absolute or 
relative.

© Oasys Ltd 
2021 21



Oasys GSA

If relative residual is selected, the actual force residual and moment residual at each node are 
calculated from

where

 are force residual and moment residual respectively

 are relative force residual and relative moment residual respectively

is the sum of the total imposed loads including both nodal and member loads

is the number of nodes in the structure

If there is no imposed load, e.g. a structure subjected only to support settlement, the force 
residual and moment residual are calculated from

where

are the sum of nodal translational stiffness and rotational stiffness of all 
the nodes in the structure.

If an absolute residual is selected, the specified force residual and moment residual will be used 
in the analysis.

Beam – Axial force

The axial force of a beam is first calculated as

where is the pre-stress force.

If this force is greater than the yield capacity in tension it is set to the yield capacity in tension; if 
it is less than the yield capacity in compression it is set to the yield capacity in compression. The 
yield capacities are

© Oasys Ltd 
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where  is the tensile yield stress and is the compressive yield stress

The strain is calculated as

The unstressed length is the initial distance between the end nodes (or the ‘initial length’ as 
specified by the user) modified for temperature.

Beam – Shear force and torsion

The shear modulus of a beam is assumed to be

The shear strain caused by a shear force is considered to be uniform over the whole beam for 
planes normal to a principal axis. The shear strain between a principal axis and the local beam x 
axis is taken as

and the effective shear stress is taken as

Where are the shear factor along the principal axis closest to the local beam y/z axis.

The angle by which a beam is twisted about its local x axis is simply considered to be

Beam – Axial force – flexural stiffness interaction

If slenderness effects are to be considered the bending stiffness of a beam is modified according
to the axial load by using Livesey’s ‘stability functions’1.

1 M.R. Horne & W. Merchant “The Stability of Frames” Pergamon 1965

© Oasys Ltd 
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For a continuous/continuous beam within the elastic range the bending moment at end 1 is 
taken as

equation A

S and SC are derived from series

where

and compression is positive.

For a continuous/pinned beam within the elastic range the bending moment at end 1 is taken as

 equation B

S″ and C are derived from series

where is the moment at end 2 and compression is positive.

These series are used to pre-calculate S, SC, S″ and C for ten values of K. During calculation cycles
values of S, SC, S″ and C are interpolated for the current value of K.

© Oasys Ltd 
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Beam – Yielding

For an explicitly defined section the bending moments about the principal axes are limited to the
following value

For equal yield stresses this is a good approximation to the plastic bending moment capacity.

The axial force is computed as above.

The calculations for the axial force and for the bending moments about the principal axes are all 
performed independently. Beams are assumed to behave elastically up to the limiting force or 
bending moment. Thus plastic behaviour is only modelled with any degree of realism for cases 
where either

 only axial forces are significant or

 only bending about one principal axis is significant, the tensile and compressive yield 
stresses are similar and the transition between first yield and full plasticity can be 
ignored.

If the bending moment at one end of a beam has been limited to the plastic moment capacity, 
the bending moment at the other end is obtained by using equation B above

This bending moment is in turn limited to the plastic moment capacity.

For a beam with a standard shape section and a specified yield stress, the program calculates 
the tensile and compressive yield forces of the section, which are taken to be

The program then constructs a ‘look up’ table for each shape before the commencement of 
calculation cycles.

The ‘look up’ table contains values of

 bending moment causing first yield (i.e. the lowest bending moment at which with elastic
behaviour yield stress is attained in tension or compression at one point in the section)

 plastic bending moment (i.e. the bending moment with the section on one side of the 
neutral axis at the tensile yield stress and on the other side of the neutral axis at 
compressive yield stress).

for

 nine values of axial force equally spaced between the tensile and compressive yield axial 
loads of the section.

© Oasys Ltd 
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 angles of applied moment at intervals of 15 degrees from 0 to 345 degrees with 
reference to the principal axis that is nearest to the beam local y axis.

During calculation cycles the program computes the bending moment at first yield and the 
plastic bending moment in a beam for the current axial force and angle of applied bending 
moment by linear interpolation between the values in the “look up” table (both bending 
moments are of course zero when the axial force equals the tensile or compressive yield force, 
and the axial force of a beam is limited to values between the tensile and compressive yield 
forces)

The program initially calculates the forces and bending moments at each end of a beam 
assuming elastic behaviour. If the net bending moment at the first end is greater than the 
moment causing first yield then the bending moment is modified according to the formula

equation C

If the bending moment at the first end of a beam is modified, the bending moment at the second
end is obtained by using equation B

If the bending moment at the second end exceeds that at first yield, it is modified in the same 
way as was the one at the first end, and the bending moment at the first end is obtained by 
using equation B

If this bending moment is greater than the moment causing first yield, the whole process is 
repeated until the bending moments cease to be modified.

Equation C is equivalent to halving the stiffness of a beam at first yield.

Fabric- Stress computation

The warp and weft directions are assumed to be perpendicular. The direct and shear strains are 
first computed for the warp and weft directions assuming uniform strains over each triangle and
the stresses are calculated from the equations

A

B

where x is the warp direction and y is the weft direction.

© Oasys Ltd 
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The principal stresses are then computed. If a triangle is set to take no compression, 
compressive principal stresses are set to zero.

The forces exerted by the triangle are calculated from the principal stresses.

Equations A and B are obtained by rewriting

and

Poisson’s ratio for pure warp stress  is defined in the material table. , the Poisson’s ratio 
for pure weft stress is calculated from

If no shear modulus is specified it is calculated as

For isotropic materials where and this is equivalent to

This corresponds to elastic behaviour.

Nonlinear Dynamic Analysis

GSA uses explicit time integration in the nonlinear dynamic solver. This progresses the solution 
in small steps updating the state at each time step. This allows us to move from the conditions at
time t to those at a new time t+t. The fist update is to calculate the force at time t, ft. This is used
to update the acceleration, at, at time t and from this the velocity and displacement are updated 
to the next time step.
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In GSA the mass matrix is diagonalized so the inverse of the mass matrix is trivial. For this 
scheme to work the time step t has to be small or the solution is unstable. It needs to subdivide 
the natural period of the mesh.

The shortest natural period depends on the smallest element mesh dimension. Consider a 
portion of a large mesh vibrating so that alternate layers of elements stretch and compress, 
ignoring and differences in the density and elastic modulus.

The nodal mass and element stiffness are

Where ρ is the density and E the elastic modulus. The natural frequency, ω, is

Where c is the wave speed in the material. For stability

Where α is a factor less than one to ensure stability – typically ≤ 0.9.

It is clear that the element size has a direct impact on the time step and hence the number of 
iterations to arrive at a solution.

To avoid a small number of small elements having an adverse effect on the solution time mass 
scaling can be used. For these elements the density can be artificially increased so that the size 
does not impact on the time step. For example if there is one element that is half the size of the 
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others, a quadrupling of the density of this element, halves the wave speed and this leaves the 
solution time step unaffected by this small element. Provided it is used sparingly the effect on 
the local an overall mass is negligible.

Explicit Time Integration

The explicit time integration scheme can be written as

The force vector at time t is the sum of all the forces acting on the nodes (degrees of freedom).

For an element the internal force vector for linear and geometrically non-linear problems is 
calculated from

and if Rayleigh damping is included

Rayleigh Damping

Rayleigh damping considers damping to be related to both the mass and stiffness

For a critical damping ratio

For two distinct damping ratios

This can be solved to determine the coefficients . In the case of the same damping at both 
frequencies this simplifies to
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Raft Analysis
Raft analysis is a soil-structure interaction analysis, iterating between a solution of the structural 
analysis using Gss and the soil analysis using Pdisp until convergence of nodal displacements is 
achieved.

Iteration

For the soil interaction nodes on raft, the analysis iterates through the following steps until 
convergence is reached:

1. For each soil interaction node, a spring support will be generated with default support 
stiffness it does not exist. If the support spring exists, it will be used and its stiffness will 
be modified during the analysis. After analysis, its stiffness will be restored.

2. Run Gss linear static analysis to obtain the displacements  and spring-support forces

 for each of the interaction nodes

3. Calculate soil pressure under each of the soil interaction nodes using

Where  is the area associated with interaction node and the contact pressure is 

subject to lower and upper limits .

4. Run Pdisp analysis to obtain the settlements of soil,  under the applied pressure 
loads

5. Check the differences between raft displacements and soil settlements, if they are 
smaller than the residual limit, save the results and stop the analysis, otherwise go to 
step 6

6. Re-calculate the support spring stiffnesses according to the support spring forces and 
the soil settlements using the following equation and go to step 2.
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A damping coefficient  that can be used to modify the stiffness update, i.e. reserve some 
percentage of the previous stiffness. The value of damping coefficient is between 0 and 1. If 
damping coefficient is specified, the new stiffness will be calculated from:

Piles

For the soil interaction nodes on the piles, the analysis iterates through the following steps until 
convergence is reached:

1. For each soil interaction node, generate a spring support in X, Y & Z direction with 
support stiffness calculated from soil settlement under unit point load.

2. Run Gss linear static analysis to obtain the displacements and spring-support forces

 for each of the interaction nodes

3. Calculate the soil reaction forces to the interaction nodes from

where the interaction areas for the interaction node are

Pile interaction node and relevant dimensions

with  the perimeter of the pile and where
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and are the pile soil interaction coefficients and derived from the Pile Soil 
Interaction Coefficient (PSIC) curves defined by the users as shown below.

Pile Soil Interaction Coefficient Curve

where  is the differences of the pile displacements and the soil settlements at the 

corresponding points and is the pile dimension in x and y directions or 
diameter.

4. Calculate the pressure loads on soil due to the soil reaction forces  and the 

interaction areas 

5. Run a soil settlement analysis using the embedded Pdisp program

6. Calculate the compensation forces to counter balance the support spring forces due to 
the use of constant support spring stiffness.

7. Check convergence, if satisfied, stop, otherwise, goto Step 2.

Convergence

The solution is converged if the difference of raft/pile displacements and soil settlements are 
smaller than the predefined acceptable residual. The residual can be defined in two ways.

 Absolute residual - the residual is defined directly such 0.1 mm, 1.0 mm, or 5.0 mm.

 Relative residual - a percentage is defined that is used to calculate the actual residual 
based on the largest soil settlement. The actual residual is equal to the defined 
percentage of the largest soil settlement.
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Dynamic Response Analysis
Harmonic Analysis

Harmonic analysis is used to calculate the elastic structure responses to harmonic (sinusoidally 
varying) loads at steady state. This is done using modal superposition.

The dynamic equation of motion is:

Where represents the spatial distribution of load and  the time variation.

From the mode shape results of a modal dynamic analysis, the nodal displacements, velocities, 
and accelerations can be expressed as

where are the displacement, velocity, and acceleration in modal (generalized) coordinates, 
for the modes analysed.

Substituting these in the original equation gives

Pre-multiplying each term in this equation by the transpose of the mode shape gives

According to the orthogonality relationship of the mode shapes to the mass matrix and the 
stiffness matrix and also assuming the mode shapes are also orthogonal to the damping matrix 
(e.g. Rayleigh damping), this equation can be replaced by a set of uncoupled dynamic 
equations of motion as shown below.

Setting
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Then the uncoupled equations can be expressed in a general form as follows

where all the terms are scalars. Solving this equation is equivalent to solving a single degree of 
freedom problem.

For the single degree of freedom problem subjected to harmonic load, the dynamic 

magnification factors of the displacement for mode  in complex number notation is

where

and θi is the natural frequency of mode .

The maximum displacement, velocity & acceleration of mode  in the modal coordinates are

Substituting gives the maximum actual nodal displacements, velocities & accelerations at the 
steady state of the forced vibration as

After obtaining the maximum nodal displacements, the element forces and moments etc can be 
calculated as in static analysis.
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Periodic Load Analysis

GSA periodic load analysis is to calculate the maximum elastic structure responses to generic 
periodic loads at steady state. Modal superposition method is used in GSA periodic load analysis.

The dynamic equation of motion subjected to periodic loads is

Where  is a harmonic load function. Using a Fourier Series, the periodic function of time 
can be expressed as a number of sine functions

where are the Fourier coefficients (or dynamic load factor) defined by the user and is the 

period of the periodic load frequency and is the number of Fourier (harmonic) terms to be 
considered.

Substituting in the first equation we can rewrite as a number of dynamic equations of motion 
subjected to harmonic loads:

The maximum responses of this can be solved using harmonic analysis for each of the harmonic 

loads  then the maximum responses from the periodic loads can be calculated 
using square root sum of the squares (SRSS)

Linear Time-history Analysis

Linear time history analysis is used to calculate the transient linear structure responses to 
dynamic loads or base acceleration using modal superposition.

The dynamic equation of motion of structure subjected to dynamic loads is

If the excitation is base acceleration
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where is an influence vector that represents the displacement of the masses resulting from 
static application of a unit base displacement defined by the base excitation direction and the 
force due to the base acceleration is

To use the results (mode shapes) from modal dynamic analysis, the nodal displacements, 
velocities, and accelerations can be expressed in modal coordinates as

Then setting

gives

This gives a single degree of freedom problem that can be solved using any of the direct 
numerical analysis methods such as Newmark or central differences (Newmark is used in GSA). 
There are m such equations that are corresponding to each of the modes from the modal 
dynamic analysis. Superimposing the responses from each of the one degree of freedom 
problem the total responses of the structure can be calculated from

Footfall Analysis

Footfall analysis (or in full, footfall induced vibration analysis) is used to calculate the elastic 
vertical nodal responses (acceleration, velocity, response factor etc.) of structures to human 

footfall loads (excitations). The human footfall loads  are taken as periodic loads. Using to 
Fourier Series, the period footfall loads can be expressed as:

where is the body weight of the individual, and are the Fourier coefficients (or dynamic load
factor), the actual values of dynamic load factors can be found from reference 24, 25 and 26 in 

the bibliography, is the period of the footfall (inverse of walking frequency) and the number 
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of Fourier (harmonic) terms to be considered, 4 is used for walking on floor using CCIP-016 
method, 3 is used for walking on floor using SCI method and 2 is used for walking on stairs.

After subtracting the static weight of the individual (since it does not vary with time and does not 
induce any dynamic response), the dynamic part of the footfall loads are the sum of a number of
harmonic loads

There are two distinctive responses from the footfall excitation, the resonant (steady state) and 
transient. If the minimum natural frequency of a structure is higher than 4 times the highest 
walking frequency (see reference 24), the resonant response is normally not excited since the 
natural frequencies of the structure are so far from the walking (excitation) frequency, therefore 
the transient response is normally in control, otherwise, the resonant response is probably in 
control. Both resonant (steady state) and transient analyses are considered in GSA footfall 
analysis, so the maximum responses will always be captured.

Resonant response analysis

As footfall loads are composed of a number of harmonic loads (components), harmonic analysis 
is used to get the responses for each of the harmonic components of footfall loads and then to 

combined them to get the total responses. From one of the harmonic components  of the 

footfall loads in equation above and the given walking frequency , the following dynamic 
equation of motion can be obtained

where is a unit vector used to define the location of the harmonic load. All the components in 
this vector are zero except the term that corresponds to the vertical direction of the node 
subjected footfall load.

Since the number of footfalls is limited and the full resonant response from the equation above 

may not always be achieved, a reduction factor for the dynamic magnification factors is 
needed to account for this non-full resonant response. The reduction factor can be calculated 
from

Where is damping ratio of mode m and with the harmonic load number and

the number of footfalls.

Applying this reduction factor to the dynamic magnification factors  in Harmonic Analysis, 
this equation can be solved using the method described in Harmonic Analysis Theory section. 
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Repeating this analysis, the responses from the other harmonic loads of the footfall can also be 
obtained. The interested results from this analysis are the total vertical acceleration and the 
response factor from all harmonic loads of the footfall. The total vertical acceleration is taken as 
the square root of the sum of squares of the accelerations from each of the harmonic analyses. 
The response factor for each of the harmonic loads is the ratio of the nodal acceleration to the 
base curve of the Root Mean Square acceleration given in reference 25 as shown below. This 
total response factor is then taken as the square root of the sum of squares of the response 
factors from each of the harmonic loads. According to this, the total acceleration and response 
factor can be calculated from

where

 is the maximum acceleration at node 

 is the maximum acceleration at node i by the excitation of harmonic load

 is the number of harmonic components of the footfall loads considered in the 
analysis

 is the response factor at node 

 is the response factor at node  by the excitation of harmonic load

is the frequency weighting factor and it is a function of frequency

For standard weighting factors see Table 3 of BS6841.

Transient response analysis

The transient response of structures to footfall forces is characterised by an initial peak velocity 
followed by a decaying vibration at the natural frequency of the structure until the next footfall. 
As the natural frequencies of the structure considered in this analysis is much higher the highest 
walking frequency, there is no tendency for the response to build up over time as it does in 
resonant response analysis. The maximum response will be at the beginning of each footfall. 
Each footfall is considered as an impulse to the structure, according to references 35 & 29, the 
design impulse can be calculated from

When walking on floor (Concrete Centre/Arup method)

© Oasys Ltd 
2021 38



Oasys GSA

When walking on floor (SCI P354 method)

When walking on stairs (Concrete Centre/Arup method)

When walking on stairs (SCI P354 method)

where

 is the design impulse for mode in NS

is the walking frequency in Hz

is the natural frequency of the structure in mode in Hz

is the weight of the walker in N

For this impulse, the peak velocity in each mode is given by

and the peak acceleration in each mode is given by

where

is the peak velocity in mode  by the footfall impulse

is the peak acceleration in mode  by the footfall impulse

are the vertical displacements at the excitation and response nodes respectively
in mode 

is the modal mass in mode 

The variation of the velocity with time of each mode is given by
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and the variation of the acceleration with time of each mode is given:

where is the damping ratio associated with mode 

The final velocity and acceleration at the response node are the sum of the velocities and 

accelerations of all the modes  that are considered

This gives the peak velocity and peak acceleration. The root mean square velocity and root mean
square acceleration can be calculated from the period of the footfall

The response factor at time t (t is from 0 to T and T is the period of the footfall loads) can be 
calculated from

where

is the frequency weighting factor corresponding to the frequency of mode

The final transient response factor, based on the root mean square principle, is given by
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Seismic Calculation
Response Spectrum Analysis

Response Spectrum

The response of a single degree of freedom system mode (frequency , spectral acceleration

) is

Modal analysis reduces a complex structure to an equivalent system of single degree of freedom
oscillators so this can be applied to the structure as a whole for any selected mode. The 
response in a given mode i in direction j is

Where is he participation factor to account for the direction of excitation. The term

is the modal multiplier.

For global x & y we use  & . So for excitation at an angle α we want to use α. Going back 
to the definition of the participation factor in x and y directions:

Where x & y corresponds to a rigid body displacement in the x & y directions. So the rigid body 
vector at α is

And the orthogonal direction α’ would have a rigid body vector

This means that for a rotated excitation direction we just need to rotate the participation factors 
and we don’t need to transform the displacements, etc.
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or

That leaves the only transformation we need being the transformation of global displacements 
to local for nodes in constraint axes. For these we want to transform modal results from global 
to local, do the combination and transform combined value from local to global.

The modal responses are then combined using one of several combination methods.

Combinations

The main combination methods are:

ABSSUM

SRSS

CQC2

where

where ζi and ζi is the damping associated with frequencies fi and fj.

If the damping is constant this simplifies to

2 Wilson, der Kiureghian & Bayo, 'Earthquake Engineering and Structural Dynamics', Vol 9, pp 
187-194 (1981),
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Rosenbluth3

where

CQC3

In SRSS method, the spectra  are applied to 100% on the principle directions. The 
responses obtained from SRSS combination has equal contributions from all the directions. 
However, in practice the same ground motion will not occurs in both the direction. Therefore, 
SRSS yields conservative results.

Menun and Der Kiureghian4 (1998) presented the CQC3 combination method for combination of 

the orthogonal spectrum. Let assume are the major and minor spectra applied at an 

arbitrary angle  from the structural axis. To simplify the analysis further assume the   

spectra is some fraction of  spectra.

3 ASCE 4-09 Seismic analysis of safety related nuclear structures and commentary', Chapter 4.0 
Analysis of Structures (2009)
4 Menun, C., and A. Der Kiureghian. 1998. “A Replacement for the 30 % Rule for
Multicomponent Excitation,” Earthquake Spectra. Vol. 13, Number 1. February.
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The peak response value can be estimated using the fundamental CQC3 equation

where

and  are the modal quantities produced by spectrums applied at x and y directions,  is 

the modal value produced by the vertical spectrum and  is the arbitrary angle at which the 
lateral spectra is applied.

Normally, the value of  is not known. The critical angle that produces maximum response can 
be calculated using

And the critical response becomes

If the value of , CQC3 combination reduces to SRSS combination. The peak response value 

is not dependent on the  and the peak response can be estimated using.

There is no specific guidelines available to choose the value of . Menun and Der Kiureghian 
presented an example for CQC3 combination with a value ranging from 0.50 to 0.85.

Storey Inertia Forces

The storey inertia forces can be calculated from the storey mass, m, and inertia, Izz, response 
spectrum and the modal results. The storey modal translations (ux,uy)and rotations (θz) are 
calculated (see below)

The force and moment for excitation in the ith direction are then determined from
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Where  is the code scaling factor, is the spectral acceleration and  the participation 
factor.

Equivalent Static and Accidental Torsion Load

Many seismic codes have procedures for calculation of equivalent static or accidental torsion 
loads.

GSA provides a method of calculating these loads.

The first stage in the calculation is to establish the nodal masses. This includes the mass of 
elements plus the additional mass derived from any loads. If a modal analysis has previously 
been carried out this information is picked up from that analysis task. For each storey we can 

calculate the storey mass  by summing the mass of all nodes in that storey.

If a response spectrum case has been selected the base shear, , is extracted from that 
calculation, otherwise the base shear is calculated using the code equations (e.g. UBC, IBC or 
FEMA).

At this point different codes have different requirements. In UBC 1997, depending on the period,

an additional force, , is added to the top storey.

For IBC and FEMA an exponent on the distribution function is required

For other codes is set to 1.

Equivalent Static

We then calculate the force to be applied to each storey, , at height, 
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And for the top storey

This storey force is then distributed to the nodes, , in proportion to their mass

Accidental Torsion

For the accidental torsion we calculate the storey masses as for the equivalent static and we 
calculate the centre of mass of each storey. Storey calculations are relative to the centre of mass.
We also need the width of the storey which is calculated by the difference in the extreme 
coordinates in the direction of interest.

We have an offset, , which is based on the width of the storey. The accidental torsion moment 

for the storey is then

This is then applied as forces to the nodes in the storeys

As well as a resulting torsion on the storey this may lead to a force

So we correct for this by adjusting these forces by

And sum the moment on the storey is

Finally we adjust these force values so that we have the correct moment on the storey
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Reduced stiffness & P-delta

The element stiffness can be partitioned into structure (s) and retained (r) degrees of freedom

So

Giving the reduced equation

or

When creating the structure stiffness matrix the element matrix can be assembled and then 
reduced as above before being included in the structure equations.

Once the structure displacements are calculated the element displacements can be established 
from

And the element forces as

For a P-delta analysis the global solution is modified to

but the element force calculation is unchanged. This means that once the structure 
displacements are calculated the element displacements and forces are calculated from
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Long Term Analysis

Long term analysis is not a different type of analysis as such. Instead it is an analysis where 
creep is taken into account for concrete materials. A creep coefficient is specified and this is used
in the analysis to give effective E and G values for the concrete materials.

Matrix Solver Options

There are two main approaches to the solution of the system of equations – direct solutions and 
iterative solutions. The iterative solutions can be split into ones that involve the full system 
matrix and element by element (EBE) methods.

For the direct (matrix) solutions there a number of options available. The general equation to be 
solver in GSS is

In all cases the fact that the matrix  is symmetric and relatively sparse is exploited in the 
solution.

Once the matrix is factorized the solution of the equations is a straightforward back substitution 
in two passes.

Sparse Parallel Direct Solver

The sparse parallel direct solver uses a similar storage scheme as the sparse direct solver but 
factorizes the matrix in parallel, utilising multiple cores in CPUs. This makes use of the 'Pardiso' 
solver from Intel Math Kernel Library. Pardiso uses METIS based reordering for reducing fill-in 
and employs Bunch-Kauffman based pivoting for a sparse LDLT factorization.

Sparse Direct Solver

The sparse direct solver is another option with exploits the sparsity of the structure matrices. 
The solution method is similar to the active column solver in that the solution method is direct 
although the actual methods used are somewhat different. The sparse direct solver makes use 
of the approximate minimum degree (AMD) algorithm to order the degrees of freedom. This 
method is useful in minimizing the amount of fill when factorizing the matrices. The actual 
factorizing uses a sparse LDLT algorithm.

These algorithms have been developed at the University of Florida CISE 
(http://www.cise.ufl.edu/research/sparse/).
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Modal Damping

Modal damping is a global damping for each of the modes from modal analysis. Modal damping 
can be defined when doing modal superposition dynamic response analysis such as harmonic 
analysis and footfall analysis etc. When a model has materials with different damping 
characteristics, it is difficult to evaluate/estimate the modal damping. In this case, GSA gives an 
option in modal analysis to calculate the modal damping from the material damping defined for 

each of the elements used in the model. GSA calculates the modal damping for mode  from the
formula below:

Where is the stiffness proportion damping factor in the range 0 to 1 and is the mass 

proportion of damping, where , and the subscript refers to the element.

Participation Factor and Effective Mass

The modal mass for mode is defined as

The direction information can be extracted using the participation factor. The participation factor

for mode in the  direction is given by

where the vector is a rigid body vector in the  direction. The effective mass is similar but 
defined as

The rigid body vectors are defined as
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So a rigid body vector for a rotation of about global z can be defined as

The effective mass in a rotated axis system can be calculated from the participation factors and 
effective masses.

So

The sum of the effective mass in any given direction over all the modes is the total mass. Staring 
with the definition of effective mass

The rigid body vector can be written as

So the term in the numerator of the effective mass becomes so
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Also the total mass and  so

So the sum of the effective masses over all the modes is the total mass.

Ill Conditioning

In the vast majority of cases the solver will give a correct solution to the problem. However, some
problems are by nature ill-conditioned in which case small changes in the input data can lead to 
more significant changes in the results.

Taking a simple example to look at ill-conditioning; consider a simple two spring system, where 

the springs are connected in series. The stiffness of the first spring is and that of the second is

and we assume that  is much greater than .

In this case the equations describing the system is

As in a solver based on a Gaussian elimination technique, we use these equations to arrive at a 

relationship between and 

which when substituted in the other equation gives:

or
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With exact arithmetic the term would be zero, however, if  is large compared with 
and due to limited precision, some error will be introduced in the calculation. If this error is 
denoted by , then the equation we have is

We have then a system as shown below where the error is like adding a third spring, which acts 

in parallel with .

The expected reaction is , but the reaction that is calculated is

Thus the reaction is in error by a factor

Condition Number

Ill conditioning arises while solving linear equations of the type

for given loads and stiffness in (say) linear static analysis, approximations are introduced in 
the solution because all calculations are carried out in finite precision arithmetic. This becomes 

important when  is ill-conditioned because there is a possibility of these approximations 
leading to large errors in the displacements. The extent of these errors can be quantified by the 
'condition number' of the stiffness matrix.

The condition number of a matrix (with respect to inversion) measures worst-case of changes in 

{x} corresponding to small changes in or . It can be calculated using the product of norm of 
the matrix times the norm of its inverse.

where is a subordinate matrix norm.
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If K is a symmetric matrix, the condition number κ(K) can be shown to the ratio of its maximum 

and minimum eigenvalues and .

The minimum value of  is 1 and the maximum value is infinity. If the condition number is 
small, the computed solution is reliable (i.e. a reliable approximation to the true solution of

. If the condition number is large, (i.e. if the matrix is almost singular) the results cannot 
be trusted.

GSA computes a lower bound approximation to the 1-norm condition number of K and this is 
reported as part of the solver output. This can be used to evaluate the accuracy of the solution 
both qualitatively and quantitatively. The (qualitative) rule of thumb for accuracy is – the 
number of digits of accuracy in is

In general any stiffness matrix with condition number above 1015 can produce results with no 
accuracy at all. Any results produced from matrices with condition number greater than 1010 
must be treated with caution.

Where a model is ill-conditioned, Model Stability analysis can help detect the causes of ill 
conditioning.

For a given condition number, we can also compute the maximum relative error in . The max. 
relative error in  is defined as the maximum ratio of norms of error in  to , i.e.

Given a matrix with condition number , the maximum relative error in when solving

 is

where  is the constant 'unit-roundoff' and is equal to 1.11e-16 for double precision floating 
point numbers. The maximum relative error is computed and reported as part of solver output. 

Ideally, this should be small , since a small relative error indicates a reliable solution but 

as , the relative error grows rapidly.

GSA calculates the condition number using Higham and Tisseur's block 1-Norm condition 
number estimation algorithm.

These are reported in the Analysis Details output.
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Error Norms

When using GSA it is important that the user can be confident in the accuracy of the results. 
There are a number of checks that the user can carry out to check accuracy, however GSA 
provides some measure of the accuracy of the displacement solution. This is reported in the 
Analysis Details output. The definition of the error norm is different for static and modal 
dynamic or buckling results.

Statics

In static analysis the error norm is not calculated unless the model shows signs of being ill-
conditioned. The calculation is as follows

1. Calculate the residual.

2. Solve for the displacements resulting from the residual and compare these with the 

actual displacements.

3. Calculate the error norm.

Thus

where

Dynamics and buckling

In a dynamic analysis the error norm is always calculated as follows

and in the case of buckling

Missing Mass & Residual Rigid Response

A modal analysis takes account of how the mass is mobilised in a dynamic analysis. However 
only a relatively small number of modes are calculated, so not all of the mass if mobilised. 
Provided the modes up to a high enough frequency are calculated the remaining response can 
be considered as an essentially static response. There are procedures for establish the missing 
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mass and taking this into account through a static analysis. On is given by the U.S Nuclear 
Regulatory Commission5.

For a given excitation direction j the mass associated with the modes can be calculated for each 
degree of freedom from

The missing mass is then

Given the ground zero period acceleration (ZPA) The missing response can be treated as a static 
load case

A set of static loads corresponding to the different directions can then be established.

Gupta Method

The Gupta method is a way of including the residual rigid response along with the response 
spectrum analysis. This defines a rigid response coefficient, αi so that the periodic response is

The coefficient α is defined by Gupta as

where

Applied Displacements and Lagrange Multipliers

Applied displacements are where we add a constraint to the model such that the displacement 
of certain nodes are fixed in given directions. We apply this displacement constraint by use of 
Lagrange multipliers.

5 U.S Nuclear Regulatory Commission, Regulatory Guide 1.92 Combining Modal responses and 
Spatial Components in Seismic Response Analysis, Revision 2, July 2006
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The basic equations for a linear static analysis are

The applied displacements are applied using Lagrange multipliers. The basic concept is that the 
structure matrix can be augmented to enforce a displacement condition. The applied 
displacement can be related to the displacement vector through:

Where the  matrix has a value of 1 for the degree of freedom that is constrained. We can then 
form an augmented system equation

Where  are the Lagrange multipliers used to enforce a constraint condition and  are the 
applied displacements. For a structural problem the Lagrange multipliers are the forces that 
need to be applied to the system to endure that the displacement condition is met.

Expanding the matrix equation gives

so

Solving this equation gives the Lagrange multipliers, which can then be used in

to solve for the displacements.

In these situations, a number of forces have to be added to the system to ensure the specified 
displacement conditions are met. The extra forces that need to be applied to the system are 
given by the Lagrange multipliers and are the extra terms in the augmented load vector.
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Assemblies
Assemblies are defined as a collection of elements (or members). They provide a way to consider
a collection of elements, such as a building core, as a single beam like entity. Results for 
assemblies are calculated by aggregating the results from the elements defining the entity.

For each point along the length (x axis) of the assembly a ‘cut’ is made through the elements and 
the results across this cut face aggregated. 

1D element 2D element 3D element

Displacement calculation

For the displacement calculation the polygons resulting from these cuts is used

 1D – the element cut of the plane is expanded to the enclosing box
 2D – the element cut line is expanded to the top and bottom surfaces
 3D – the polygon on the cut plane

The displacement and rotations are based on a displacement plane described for each 

component by

 

A least-squares fit across the points gives a set of equations (one for each of  directions)

Then the displacement are
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And rotations are about and come from the curvature terms in the displacement equation 
in the direction

The twisting rotation is calculated from

Forces and moments

For the force calculation the forces on each element at the cutting plane summed for each 

component by

and for the moment calculation

where subscript 0 refers to the element cut position on the cutting plane, giving a resulting 
moment of

Lagrange Interpolation

Lagrange interpolation6 gives a way of fitting a polynomial through at set of points. The basic 
polynomial is

where

6 Archer, Branden and Weisstein, Eric W. "Lagrange Interpolating Polynomial." From MathWorld--
A Wolfram Web Resource. http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html
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In order to generate a curve in space it is convenient to consider this as a four dimensional 
problem with parameter t as the independent variable. This ensures that t is monotonic avoid 
singularities. The resulting modified equations are

where

For convenience the t values are assumed to be in the range [0:1]
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Axes
Axes can be either Cartesian, cylindrical or spherical. The coordinates in these are:

 Cartesian

 Cylindrical

 Spherical

An axis is defined by three vectors irrespective of axis type. These define the location and basic 
orientation. The x axis vector is any vector pointing in the positive x axis direction. The xy plane 
vector is any vector in the xy plane of the axis that is not parallel with the x axis vector. The axes 
are then constructed as follows:

The basic axis system is the Global Cartesian axis system, normally referred to as the Global axis 
system. All other axis systems are located relative to the Global axis system. Global axis 
directions are generally denoted X, Y and Z to distinguish from other, more general axis 
directions which use x, y and z.

All the axes systems in GSA are right handed axes systems. Rotations about the axes follow the 
right hand screw rule
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Composite
Composite Slabs

Composite slabs are a slab supported on steel deckling. These can be modelled as a solid slab 
with adjustment to the in-plane (tp) and bending (tb) thickness. For a unit width the area of slab is 
A concrete (Ac) and steel (As) are known as are the second moments of area (Ic and Is) and the E 
values (Ec and Es).

Referring back to the concrete as the primary material the effective area is

And the effective thickness (in-plane) is

Give the centroid of the concrete (zc) and steel decking (zs) the centroid of the composite section 
is then

and the effective second moment of area (Ieff) is

And the effective thickness in bending is

Effective Elastic Properties

In order to simplify calculations it is possible to determine affective elastic properties of a 
section. The simplest of these is the area. Consider a section with both concrete and steel with 
areas Ac and As respectively. The axial stiffnesses are
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And the total stiffness is then

To simply calculation we can choose a reference material. So for concrete as a reference material

or

More generally for a collection of components with a reference section

For a section made of multiple components the effective centroid is defined as

As for axial properties effective bending properties can be defined (allowing for the different 
centroids) as
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Constraint & Constraint Equations
Constraint equations for the basis of the different constraint types in GSA:

 Joints
 Rigid constraints
 Constraint equations
 Tied interfaces

Constraint Equation

The form of a constraint equation is

and is used to tie degrees of freedom in the model.

Joint

For a joint this becomes a set of equations for the linked degrees of freedom of the form.  In the 
simplest form if the constraint axis of the two nodes are the same

When the constrain axes of the two nodes differ there is an adjustment of the form

Where are the direction cosines associated with the secondary and primary nodes 
respectively

Rigid Constraints

For a rigid constraint there are a set of constraint equations which respect the geometry of the 
constraint. So for a single constrained node the constraint equations are

where the δ terms are 1 for a fixed and 0 for a pinned rigid constraint.
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Different terms in the matrix are dropped for reduced constraint types. The two most common 
special types are plane and plate constraints with equations (for the xy case)

for an xy plane constraint

for a z plate constraint.

Tied interfaces

Tied interfaces are composed of primary and constrained surfaces. Internally these are broken 
down to nodes on the constrained side and element (faces) on the primary side. The nodes on 
the constrained side are connected to the adjacent primary face via a set of constraint 
equations.

The (r,s) coordinates of the nodes relative to the primary face are established and then the 
shape functions are used to construct a set of constraint equations

In the case of a quad-4 face this expands to

which forms the constraint equation. This is repeated for all the displacement directions.

The special case is the drilling degree of freedom. As the 2D elements have either no drilling 
freedom or one which can work quite locally. For this degree of freedom the rotation is linked to 
the translations of the 2D element. If the node is internal to the element base the rotation of the 
element as a whole. If the node is on the edge use the rotation of just that edge.

For each element node define a vector from the constrained node position to the node in the 
plane of the element. Let
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The displacement at the centre of the 2D element is

Then the rotation of the node at a distance is and angle 

So rotation at (r,s) is

Or expanding

© Oasys Ltd 
2021 65



Oasys GSA

Direction Cosines
Direction cosines contain information that allows transformation between local and global axis 
sets. Given a set of orthogonal unit axis vectors the direction cosine array is defined as

Any vector or tensor can then be transformed from local to global through

The inverse transformation uses the transpose of the direction cosine array
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Nodal axes
Nodes have a position in space but the directions associated with a node are determined by the 
constraint axis. This allows modelling of skew restraints.

Springs, dampers and masses

The definition of the axes for a nodal spring, damper or mass is the constraint axis of the node. 

Element axes
The orientation of elements depends on the element type. These are represented by the 
direction cosines based on the element x, y, and z axis directions.

Section, spring, and damper elements

Section elements include beams, bars, rods, ties, and struts are defined by two nodes locating 
the ends of the element. The x axis of the element is along the axis of the element (taking 
account of any offsets) from the first topology item to the second.

The definition of the element y and z axes then depends on the element’s orientation, verticality, 
orientation node (for section elements) and orientation angle. The element is considered vertical 
in GSA if the element is within the ‘vertical element tolerance’.

Non-vertical elements

If an orientation node is not specified, the element z axis of a non-vertical element defaults to 
lying in the vertical plane through the element and is directed in the positive sense of the global 
Z direction. The element y axis is orthogonal to the element z and x axes. The element y and z 
axes may be rotated out of this default position by the orientation angle.

© Oasys Ltd 
2021 67



Oasys GSA

Vertical elements

If an orientation node is not specified, the element y axis of a vertical element defaults to being 
parallel to and is directed in the positive sense of the global Y axis. The element z axis is 
orthogonal to the element x and y axes. The element y and z axes may be rotated out of this 
default position by the orientation angle.

Orientation node

For a section element (but not springs or dampers) an orientation node can be specified. If an 
orientation node is specified, the element x-y plane is defined by the element x axis and a vector 
from the first topology position to the orientation node, such that the node has a positive y 
coordinate. The element z axis is orthogonal to the element x and y axes. Specifying an 
orientation node overrides the “vertical element” and “non-vertical element” definitions 
described above. The element y and z axes may be rotated out of this default position by the 
orientation angle.

Orientation angle

The element y and z axes are rotated from their default positions about the element x axis by 
the orientation angle in the direction following the right hand screw rule. This occurs regardless 
of whether or not the element is vertical and of whether or not an orientation node is specified.

Cable elements

Cable elements act only in the axial direction, so only the x axis is defined following the same 
definition as the x axis of a beam element.
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Link elements

The local axes of link elements are the same as those of the primary node.

2D element axes

2D element local axes may be defined either by reference to an axis set or topologically. This is 
determined by the axis system defined in the 2D element property. If the axis system is ‘global’ 
or user defined then the specified axis set is used. If the axis system is ‘local’ then the topological 
definition is applied. User defined axes can be Cartesian, cylindrical or spherical.

Typically defining 2D element local axes by reference to an axis set results in more consistent 
local axes in the mesh.

The local axes for flat 2D elements are chosen so that the plane of the element is the local x-y 
plane.

The normal to the element is defined as

Where  is the coordinates on a point on the element, i.e. the coordinates of the node, , plus 

any offset, , at that topology position.

2D element axes defined by axis set

If the 2D element property axis is set to other than 'local' then the specified axis system is 
projected on to the element. For Cartesian axes the x axis of the axis set is projected onto the 
element

The exception to this rule is when the x axis of the axis set is within 1° of the element normal in 
which case a vector for an interim y axis is defined as

This axis set is then rotated about the element normal equivalent to an orientation angle of 90°.
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For Cylindrical and Spherical axes the z axis of the axis set is projected on to the element to 
become the local y axis.

Topological definition of 2D element axes

If the 2D element property axis is set to 'local' the local x and y axes are based on the topology of
the element.

If an orientation angle is defined these axes are rotated by the orientation angle in a positive 
direction about the element z axis.

3D element axes

3D element local axes may be defined either by reference to an axis set or topologically.
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Updated element axes

In a geometrically non-linear analysis the axes of the element must deform with the element. 
This has to resolve the difference between the original (undeformed) configuration and the 
current (deformed) configuration.

For 1D elements the deformed direction cosines can be represented by a new x vector based on 
the deformed positions of the ends of the element and the average rotation of the element 
about its x-axis.

For 2D elements the undeformed configuration can be represented by direction cosines based 

on the  axes.

The deformed configuration at can be represented by direction cosines based on the deformed

 axes.

The base direction cosines can then be updated using
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Element & Node Properties
Bar and Rod Elements

The bar element stiffness is

The mass matrix is

And the geometric stiffness is
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The rod element stiffness is

Cable, Tie and Strut Elements

These elements are variants on the bar element. Cable and tie elements can carry only tensile 
forces, while strut elements can carry only compressive forces. The stiffness matrix for ties and 
struts is identical to that for a bar elements. The non-linear aspect being part of the solver, 

solution process. The stiffness of cable elements is similar to a bar element but the is 
replaced by a stiffness term where the cable stiffness is
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Beam Elements

The beam element stiffness is

These are modified for a shear beam as follows
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The mass matrix is
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And the geometric stiffness is

wh
ere

Non-symmetric Beam Sections

In a beam with a symmetric section the bending properties depend only on the  and  
terms. If such a beam is loaded in the y or z axis directions the deflection is in the direction of the
loading.

When the section is not symmetric and is loaded in the y or z direction there is a component of 

deflection orthogonal to the loading. This is because the bending properties depend on  

and .

By rotating the section to principal axes this cross term can be omitted and if the beam is loaded
in the u or v (principal bending) axis the deflection is in the direction of the loading. In this case 
the stiffness matrix for the element is calculated using the principal second moments of area 
and is then rotated into the element local axis system.
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For a beam with a non-symmetric section the user must consider if the beam is restrained (so 
that deflections are constrained to be in the direction of the loading) or if it will act in isolation 
(resulting in deflections orthogonal to the loading).

If the beam is to act as constrained the user should use the local option for the bending axes. In 

this case the  and  values are used and the value is discarded.

If the beam is to act in isolation the user should use the principal option for the bending axes. In 
this case the stiffness matrix for the element is calculated using the principal second moments of
area and is then rotated into the element local axis system. 

The effect of shear is also a tensor quantity involving the inverse of the shear are factor k. So for 

symmetric section the  is infinite (no effect) and for non-symmetric sections there is a  
term that should be considered. Note: the principal axes for shear are in general not aligned 
with the principal axes for bending. To simplify the calculation of the element stiffness the k 

terms are rotated into the principal bending axes of the section and the effect of the  term is 
ignored.

Where the user has specified section modifiers these are specified in directions 1 and 2. If the 
bending axes are set to local then these correspond to y and z respectively. If the bending axes 
are set to principal, then 1 and 2 correspond to u and v respectively.

All catalogue and standard sections except angles are symmetric. Explicit sections are assumed 

to be defined such that the principal and local axes coincide so there is no . Geometric 
(perimeter and line segment) sections are assumed to be non-symmetric.
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Spring Elements and Node Springs

Spring elements and node springs can one of several types.

The general spring has 6 degrees of freedom. For a linear spring the general form of the stiffness
matrix is

If non-linear spring are required these can be generated by assigning a material curve 
(force/displacement or moment rotation) to each of the degrees of freedom.

Axial / torsional spring

For an axial or torsional spring only the or terms are specified, the rest are assumed to be 
zero.

Spring matrix

For a node spring a full set of stiffness terms can be defined for the upper triangle. This allows 
interaction between axial and bending terms. The stiffness matrix is then of the form
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Compression-only spring

Compression only spring elements are uniaxial nonlinear spring elements. These elements have 
no stiffness when subjected tensile loading/displacements. Under tensile loading these elements
will create a gap.

Tension-only spring

Tension only spring elements are also uniaxial nonlinear spring elements. These elements have 
no stiffness under compressive loading.

Lock-up

Lock-up elements are also uniaxial spring elements with specified initial gaps. Lock-up elements 
can be visualized as the combination of compression only and tension only spring with initial 
gaps. These spring elements do not offer any stiffness while the displacements are within the 
specified gap. Positive Gap will offer no resistance in the tension side and vice versa. Both 
positive and negative gaps have to be specified as positive values in GSA.
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Connector

Connector elements are linear elastic spring elements. These elements connects pair of nodes in
all translations as well as rotations. The size of the stiffness matrix is 12x12 and the same will be 
automatically calculated based on the stiffness of the surrounding elements. The resulting 
stiffness is large enough to produce negligible displacements and at the same time it will avoid 
the numerical instabilities.

Gap elements

Gap elements are compression only spring elements with initial gap. These elements will have 
zero stiffness in the analysis while the displacements are within the specified gap. The stiffness 
in other directions (local y and z directions) are ignored. These elements are useful in contact 
problems if frictional sliding is not concern.

Friction elements

Friction elements are three direction translational spring elements consisting of one axial and 
two translational directions. In axial direction, these elements works as Gap elements. In 
translational direction these elements behaves as elastic plastic elements. Plastic limit is 
calculated using coulomb friction law
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Where is the force in axial direction as calculated for the gap element.

Springs are assumed to be massless.

Damper Elements and Node Dampers

Damper elements and node dampers are ‘elements’ with no stiffness but with viscosity, so these 
do not form stiffness matrices but instead a damping matrix. The general form of the damping 
matrix is

For an axial or torsional damper only the or terms are specified, the rest are assumed to 
be zero.

Dampers are assumed to be massless.
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Node Masses

Node can have mass and inertia. In the normal case the mass matrix is

but if mass modifiers are included the mass matrix becomes

Inertia is a tensor quantity with the following terms

where the terms in the inertia tensor are defined as

where  are the coordinates of the centre of mass. If non-zero values are specified for 
the off-diagonal terms, it is important that these are consistent with the diagonal terms. If this is 
not done the principal inertia values can become negative. The inertia matrix is never modified 
for directions.

2D Elements

An irregularly shaped continuum defined by a boundary and areas of loading has to be 
subdivided into a mesh of finite elements. The size and shape of the element is chosen so that 
the approximate stiffness implied by the finite element is close enough to the actual stiffness of 
the continuum in that region. Thus the finite element size and shape will be determined by the 
type of element being used, the shape of the boundary if in a region close to the boundary, the 
loading applied and the experience of the user.
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Element stiffness

To generate a stiffness matrix for a curvilinear quadrilateral or triangular element a new 
approach must be used. Most finite element codes used an approach based on isoparametric or 
similar elements.

In an isoparametric element the element displacements are interpolated in the same way as the 
geometry, e.g. a plane stress element. In a superparametric or degenerate isoparametric 
element the interpolation on the geometry is of a higher order than the interpolation of the 
displacements, e.g. a plate element. In a subparametric element the interpolation of the 
geometry is of a lower order than the interpolation of the displacements, e.g. an eight noded 
straight sided quadrilateral element, where a different geometric interpolation function is used 
for the geometry from that for the displacements. The term isoparametric is often used as a 
general term to cover all these element types.

For a plane stress problem, we can establish a material matrix C that relates stress and strain. 
The displacements in a local coordinate system are

the strains are

and the stresses are

For an elastic-isotropic material the material matrix is

where are the Young’s modulus and Poisson’s ratio respectively.

Note that there is an out of plane strain , which we can ignore as it plays no part in the 
element formulation.

The strains are defined in terms of the displacements as

The simplest elements to consider are the 4 noded and 8 noded quadrilateral elements, of which
the 4 noded element can be considered a simplification of the 8 noded element. A typical 8 
noded element is shown below. The element has an arbitrary local coordinate system based on 
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the location of the nodes and the element property axis (x, y), and a natural (curvilinear) 
coordinate system (r, s) based on the topology of the nodes.

We can set up interpolation functions to interpolate the geometry as follows

where the are the interpolation functions defined below.

These interpolation functions are chosen so that

 when node is 

As the elements are isoparametric we use the same interpolation function for the displacements 
so the displacement in the element is related to the nodal displacements by

To evaluate the stiffness matrix we need the strain-displacement transformation matrix. The 
element displacements are obtained in terms of derivatives of the element displacements with 

respect to the local coordinate system . Because the elements displacements are in the 

natural coordinate system  we need to relate the derivatives in the local coordinate system
to those in the natural coordinate system. We can write an equation for the derivative with 

respect to  in terms of derivatives with respect to 
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to establish these derivatives we use the chain rule to set up the following relationship

or in matrix notation

where  is the Jacobian operator relating natural coordinate derivatives to local coordinate 
derivatives. Given that we know x and y in terms of the interpolation functions the Jacobian 
operator is easily found

This requires that the inverse of the Jacobian exist, which requires that there is a one to one 
correspondence between natural and local coordinates. This will be the case provided the 
element is not grossly distorted from a square and that it does not fold back on itself.

We can then evaluate

and thus we can construct the strain-displacement transformation matrix, 

where  is the vector of nodal displacements. The element stiffness corresponding to the local 
element degrees of freedom is then

The elements of are functions of the natural coordinate system, . Therefore the volume 
integration extends over the natural coordinate volume so the volume differential needs to be 
written in terms of the natural coordinates

The volume integral is not normally amenable to an explicit integration so normally a numerical 
integration technique is used. The integral can be written
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where

and the integral is performed in the natural coordinate system of the element. This is convenient
as the limits of the integration are then ±1. The stiffness can then be calculated

where the matrix  is evaluated at the Gaussian integration points  and  are Gaussian 
weights.

In a similar way the mass matrix and the load vectors are established.

where  is a matrix of interpolation functions and  are the body force vector, surface 
force vector and initial stress vector respectively.

Geometric stiffness matrix of shell element

The geometric stiffness matrix is calculated from:

where

With  are the in-plane forces of the shell element in x, y and xy shear directions 
respectively.

and  is the number of nodes of the elements
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2D Plate Elements

The formulation of 2D plate and shell elements considers both in-plane and transverse (out-of-
plane) displacements. Following Mindlin-Reissner plate theory, in addition to the bending strains 
we consider the effect of transverse shear strain in our complete expression for the element 
strain

where  is the out-of-plane displacement and is introduced as an independent variable to 
express the section rotations (i.e. rotations of the transverse normals about the local x and y 
axes).

We can define separate material matrices  and that relate stress and strain for the pure 
bending and shear strains respectively and so the pure bending moments and shear forces can 
be written

and

respectively.

In this way we can then express the local element stiffness matrix as a summation of the in-
plane and out-of-plane stiffness’s

where and  represent the strain-displacement transforms for the bending and shear 
components respectively.

While brief, this outlines the basic approach to the Mindlin-Reissner 2D element stiffness 
formulation. In GSA we label this concisely as the Mindlin formulation.
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MITC Element Formulation

We find that the Mindlin formulation is an effective approach for 2D parabolic elements where 
the 8-noded element accommodates sufficient terms in the stiffness matrix to sufficiently define 
the behaviour of the element numerically. However the same formulation defined over a linear 
element becomes noticeably more problematic where the absence of available terms in our 4-
noded stiffness matrix leads to numerical difficulties in expressing the same element behaviour. 
Specifically we find a difficulty in attempting to represent the transverse shear strain terms. 
Analytically as before we can express the transverse shear strain as

although numerically, the difference in the order of terms for the shear strain may lead to artificial 
stiffening of the element where the shear terms are numerically constrained from approaching zero. 
See reference 1 in the bibliography for further information. This restriction would be particularly 
noticeable where the thickness of the plate is small.

A widely practiced remedy is to under-integrate the shear term and while effective, its use is at 
the cost of reduced accuracy and stability for the element. The problem of stability alone is often
of greatest concern where the phenomenon of hourglassing can become apparent in elements 
where the thickness to length ratio is large.

An alternative formulation was put forward by Bathe and Dvorkin and has been found to be 
especially effective at resolving these difficulties. The formulation is extendable to higher order 
elements although we find the approach is most effective when resolving the difficulties most 
apparent in linear elements. The formulation is based upon the theory of Mixed Interpolated 
Tensoral Components (MITC). For the pure displacement-based Mindlin formulation we use the 
independent variables

where Bathe now introduces a separate independent variable to represent the transverse shear 
term

We use  to represent an additional set of interpolation functions for our new variable  

which we find by a direct evaluation of the shear strain at points , that is
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For a linear 2D element we obtain direct values for the shear strain at four points A, B, C, D on 
the element and so we evaluate the displacement and section rotations at these points through 
direct interpolation.

We can then construct the interpolations

using direct values for the shear strains obtained at the four points. This replaces our original 
expression for the shear terms and we continue to construct the local stiffness matrix as normal 
in a similar approach as before in 2D isoparametric elements. It is lastly worthwhile to note that 
the interpolation above assumes our element is in the isoparametric coordinate system. Further 
transformations are necessary to interpolate the shear strains directly through an arbitrary 
element in local space. Indeed, when this is done the element shows considerably improved 
predicative capabilities for distorted elements.

Element shape functions

The element shape functions for 2D elements are
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For a tri-3 element these are

For a quad-4 element these are

For a tri-6 element these are

For a quad-8 element these are
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2D Element Shape Checks

A number of element checks are carried out by GSA prior to a GSS analysis. Other analysis 
programs may have different limits but the same principles apply. For GSS the following 
warnings, severe warnings and errors are produced.

Triangle

Warning Severe warning Error

Quad

Warning Severe warning Error

where

longest side / shortest side

minimum angle

 maximum angle

distance out of the plane of the element of edge 1 / longest side

Notes:

The distance out of plane of edge 1 is calculated as hmax

Where is the element normal,  are the coordinates of the first and second corner nodes 

and  is the length of the longest side of the element.

Mid-side node locations not checked but should be approximately halfway along edge.

No check on ratio thickness/shortest side.
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Hourglassing

When Quad 4 elements with the Mindlin formulation are used in bending it is possible to 
encounter hourglassing problems. This is a problem that arises with under-integrated elements 
where there are insufficient stiffness terms to fully represent the stiffness of the element. The 
problem is noticeable in the results by an hourglass pattern in the mesh as shown below.

This problem is avoided using the MITC formulation for Quad 4 elements. This formulation uses 
a separate interpolation method for the transverse shear strains and provides considerably 
greater stability than the original Mindlin method. The original Mindlin method is kept in GSA for 
compatibility with previous models although for new models the MITC formulation is 
recommended.

Alternatively when parabolic accuracy is required Quad 8 elements are recommended. These 
also formulate elements that are still stiff in all modes of deformation, even when under-
integrated.

3D Element

GSA implements a 3D linear brick element. For a brick-8 element the shape functions are

The stiffness matrix for brick elements is obtained using selective reduced integration to alleviate

volumetric locking. The approach has been implemented in GSA where the strain-
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displacement matrix is split into dilatational and deviatoric parts7 and then the dilatational part 
of matrix is replaced with improved dilatational component. The strain-displacement matrix for 
brick elements is given by

The dilatational and deviatoric parts of the matrix can be computed using

is computed using

and

for and , and where  is the volume of the element.

7 Hughes T. J. R. The Finite Element Method – Linear Static and Dynamic Finite Element Analysis, 
Dover, 2000
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Link Element

Link elements are different to the other element types in that they apply a constraint between a 
pair of nodes. The primary node is the first node specified in the element topology and this is the
node that is retained in the solution. The other node (the constrained node) is related back to 
the primary node.

The degrees of freedom at the constrained node that are linked will depend on the type of link. 
The link allows the constrained node to be fixed (where the rotations at the constrained node 
depend on the rotation of the primary) or pinned (where the rotations at the constrained node 
are independent of the rotation of the primary). The primary node is always has the rotations 
linked to the rest of the structure. The links can act in all directions or be restricted to act in a 
plane (xy, yz or zx) where the nodes are rigidly connected for motion in the plane but are 
independent for out of plane motion.

The constraint conditions are summarised below:

All directions

where if fixed / pinned

Plane (xy plane as example)

where if fixed / pinned

Loads applied to link elements will be correctly transferred to the primary degree of freedom as 
a force + moment so no spurious moments result.

The inertia properties of a link element can be calculated from the masses at the nodes attached
to the rigid element as follows. The mass is
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and the coordinates of the centre of mass are

The inertia about the global origin is then

and relative to the centre of mass this is

The constraint equations for a link element assume small displacements. When large 
displacements are applied to a link element the constraint equations no longer apply and the 
links between constrained and primary get stretched. This effect can be noticeable in a dynamic 
analysis where the results are scaled to an artificially large value. When these are scaled to 
realistic value this error should be insignificant.

Element Mass

The mass matrix for an element can be derived as described above. This is known as a 
consistent mass matrix. In many situations it is convenient to simplify the mass matrix. 

One way of doing this is to diagonalize the mass matrix. In this case all the terms relating to 
rotations are zeroed (except for explicit analysis) and then the translational terms are 
accumulated on the diagonal of the matrix. 

The original diagonalization used a row summation where the diagonal is the sum of the terms 
in the row.

This has the effect of lumping all the mass on the diagonal but has the disadvantage that for 
higher order elements some of the mass terms are negative. This method has been superseded 
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by the Hinton-Rock-Zienkiewicz8 (HRZ) method. In this the diagonal terms of the consistent mass 
matrix are summed for each direction, n

This is then used to scale the diagonal terms

The other, less used, simplification that is used is to ignore the mass of all elements except 
lumped masses.

With both these simplifications it may be possible to diagonalize the structure mass matrix, 
however this is not possible if the inertias of nodal masses are non-zero or if there are rigid 
elements in the structure. (Rigid elements generate off diagonal terms when the masses are 
replaced by inertias at the primary.)

Element Stiffness

The element stiffness is created initially in the local axes of the element. This gives a square 
symmetric matrix.

This need to be transformed before it is added to the structure stiffness matrix, however some 
degrees of freedom are ‘released’ and these are retained on the element. This is represented by 
the matrix equation

The structure degrees of freedom need to be transformed to global directions, using the 

direction cosine array .

Offsets in global directions then relate the global structural degrees of freedom to the nodal 
degrees of freedom through a rigid transformation

8 E. Hinton, T. Rock, O.C. Zienkiewicz, A note on mass lumping and related processes in the finite 
element method, Earthquake Engineering and Structures Dynamics 4 (1976) 245-249
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Releases

Releases are applied at the nodes (or pseudo nodes in the case of offset elements) so that the 
elements do not have any moment connection. This can be applied to the elements by 
recognising that any moment applied to node is not resisted by the element. This condition is 
used to partition the element stiffness matrix.

Where the subscripts s refer to the structure and e refer to the element. Once partitioned the 
degrees of freedom related to the structure are combined into the structure stiffness matrix 
while the element degrees of freedom are included in the structure stiffness matrix (but do not 
interact with the stiffness matrix for any other element).

In the case of stiffnesses at the releases we add the stiffness terms for the release into the 
partitioned stiffness matrix. So in the case of a beam with releases at end 2 and stiffness 
associated with the released degrees of freedom the matrix is partitioned as below.

The stiffness terms at nodes where releases are applied are split, so

The release stiffness terms are similar to a spring stiffness matrix:

Offsets

Element offsets are defined as global vectors relative to the nodes. These locate pseudo nodes 
that define the flexible part of the element. Element stiffnesses are calculated for the flexible 
part and modified to give the required nodal stiffnesses. Release conditions are applied before 
the offsets (i.e. they are applied to the pseudo nodes). The element local axes are defined with 
respect to the flexible part of the element.

The offsets can then be considered as rigid links and a constraint equation set established 
linking pseudo nodes to actual nodes
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where the transformation is based on the location of the pseudo node relative to the 
actual node is

The displacements at the pseudo nodes can then be related to the displacements at the actual 
nodes.

The forces at the nodes can be related to the forces at the pseudo nodes.

The element stiffness can then be modified on a node by node basis using

Spacer Elements & Sliding Cables

Spacer elements and cable elements are intended to be used as part of multi-noded super-
elements or chains in the dynamic relaxation solver. To define the chain, or super-element, the 
program looks for spacer or cable elements with the same property number, and joins these at 
common nodes. So all the elements in a continuous length of spacer or cable must have a 
common property number, unique to that chain.

In other words each super-element is identified by a unique property number. A Super element 
cannot be discontinuous or bifurcated.

With spacer elements, the order for the input of elements is important as the “ratio” feature 
adjusts the relative distances between nodes and makes the first element the control: i.e. if the 
ratio is greater than one, the first element will be the smallest. If it is less than one, the first 
element will be the largest. The nodes for a spacer element should be defined so that they can 
be joined together to form a spacer in a head-to-tail sequence.

Generally spacers should not cross each other. If spacers are required in two directions, the 
spacers in the main direction should be carried through from one edge of a surface to the other 
and the spacers in the subsidiary direction should join nodes in adjacent main spacers.
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Cables and Sliding

Cables are a hybrid form of cable element, intended for use in dynamic relaxation analysis of 
‘real’ (not ‘form-finding’) structural models. In this analysis the cable is free to slide at internal 
nodes where cable element are connected. The cable, composed of a number of cable elements,
is considered as a single element in dynamic-relaxation. The cable can freely slide around the 
internal nodes of the element as if the cable moves around a pulley. As a result, the tensile 
forces of all the cable elements in a cable are the same. If a clamp is needed along the length of 
a Sliding Cable, two Sliding Cable elements should be defined, joining at the clamped node.

The cable property is defined by a stiffness per unit length which is equal to  where

 – elastic modulus

 – cable cross section area

The tensile force in the cable is calculated from

in which

is the total unstressed length of the cable

is the total deformed length of the cable

The nodal normal direction in a cable is defined by the line that is within the plane defined by the
two legs and it evenly divides the angle composed by the two legs. Only the normal component 
of force is transferred between the nodes along a cable and the cable.

For the portion of cable shown above assume the cable elements are in the x-y plane.

The cable force is constant along its length. Therefore the components of the cable elements 
along X1 at node A are equal and opposite. And the resultant force in this direction is 0.

The component along Y1 is applied to node A.
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The component along Z1 is 0 as the cable is in the x-y plane.

Free spacers and cables can be thought of as opposites in the way in which forces are 
transferred to their intermediate nodes. Free spacers only apply tangential forces in the plane of 
the spacer, whereas cables only apply normal forces.

Spacer Elements

Spacers are designed for soap-film form-finding only and it will be ignored in all other analyses 
even though it may has been defined in the model. In a soap-film, form-finding analysis, spacer 
elements are used to make up a multiple node super element called spacers. A spacer is used to 
maintain or adjust the nodal distance along the spacer element chain as desired in the form-
found structure. Spacers should lie over 2D element surface or along bar or tie elements with 
soap-film form-finding properties (i.e. elements with zero stiffness)

All spacers can be considered as chains of bars with initial lengths being set to about half of their
actual lengths (to ensure that the Spacers remain in tension under reasonable conditions), the 

stiffness  of spacer elements are defined in spacer properties. To reduce the influence of 
the spacer elements on the form-found shape of the structure, the stiffness of spacer elements 
should be as small as possible as long as it can maintain the required nodal spacing. Depending 
on the spacer type, one or two components of the spacer forces may be suppressed, so spacer 
elements will only control the nodal spacing and not affect the form-found shape.

As some components of spacer forces are suppressed, the nodes attached to geodesic and free 
spacer elements are not be in equilibrium at the end of form-finding analysis. In this respect 
spacers differ from other elements.

There are three types of spacer elements

 Geodesic

 Free

 Bar

The type of spacer element is defined in the spacer properties. They differ in the way that the 
force exerted by the spacer on the internal nodes is treated. For each internal node, a vector 
defines which components of the resultant spacer force on the node are taken into account. This
force pulls the node along the spacer vector. The remaining components are ignored.

The spacer types also differ in the way in which the spacing rules (defined as spacer leg length 
type) are applied within the program.

Generally geodesic spacers should be used along 2D element surface. Free spacers should be 
used to control the nodal spacing along in bar or tie elements. Similar to free spacers, bar 
spacers can be used to control nodal spacing along bar or tie elements, the difference between 
free and bar elements is that no component of Bar spacer element forces will be suppressed.
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Bar and free spacers simply adjust the spacing of their nodes along the coincident bar or tie 
elements. Geodesic spacers shift their internal nodes over the surface so as to minimize the 
overall length between the end nodes (a geodesic is the shortest route over a surface between 
two points) and also maintain the spacing of their nodes.

To understand the different spacer types, it is useful to consider a short length of spacer chain 
composed of two spacer elements jointed at the common node.

Geodesic Spacers

For geodesic spacers the component of each spacer node reaction which is normal to the 
surface of the adjacent soap-film triangle and quad elements is suppressed and so the spacers 
do not affect the form-found surface; they only control the position of nodes on the surface 
which is formed. The tension of the geodesic spacers ensures that the spacer nodes shift to form
a geodesic upon the soap-film surface that is simultaneously formed by the triangle and quad 
elements.

The geodesic spacer normal is calculated as follows. The program searches for triangle and quad
elements that are connected to the internal nodes of each geodesic spacer and attempts to form
a rosette of elements around each node. Failure causes a program error. The nodes of the 
elements in the rosette are used as ‘control nodes’ to calculate the normal of the surface on 
which the spacer lies.

Initially, the normal direction is defined from the element geometry of the surrounding 2D 
elements. This is then adjusted during analysis based on the displacements of the surrounding 
nodes.

The initial normal of geodesic spacer at node 5 in the above example is equal to
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where the are the coordinate of the nodes.

Later in the form-finding analysis, the normal will be rotated based on the displacement of the 
nodes. The degree of the rotation is calculated assuming all the surrounding nodes (2, 3, 4, 6, 7 
and 8) are connected to the spacer node (5) by beams. The beams are pin-connected at the 
outer side and fixed at node 5. The EI of the beams is proportional to the sum of the angles each 
side of the beam. The fixed end moment for each beam at the end of node 5 is calculated. The 
resultant of the moment at node 5 will rotate node 5, and this rotation will be the one that 
rotates the spacer normal at node 5.

The normals of the end nodes of a Geodesic Spacer are found (if required) by first computing the
normal as for an internal node except that

 The rosette of triangles and quads may be incomplete.

 The current normal is only rotated about an x axis lying in the plane of the normal and 
the end spacer leg.

The normal of the next internal node is then projected onto the plane of the rotated end normal 
and the end spacer leg, and reflected about the plane normal to the end spacer leg.

Normals are calculated every 10 cycles.

For the above portion of a geodesic spacer, assume the normal of the plane of soap film 

triangles and quads joined to node A is in the direction. The spacer force applied at node A

is . So the spacer will move node A in the X1 & Y1 direction.

The geodesic spacer applies the spacer leg length rules at the start of analysis. The node 
positions are adjusted at the start of the analysis to meet the rules by factoring the unstressed 
element lengths. On convergence, the node positions may not meet the leg length rules exactly. 
If this proves a problem, the use of ‘greasy pole’ restraints or bar spacers could be considered for
a final stage form-finding analysis starting from the converged form-found shape. With both 
options, out-of-balance forces will exist when converting from the soap film to the ‘real’ model, 
and care is needed in their interpretation.
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Free Spacers

For free spacers only the component of a nodal reaction that acts along a spacer’s tangent is 
preserved. So a free spacer only influences the spacing of nodes, along the length of a 1D form-
finding element.

The initial tangent of free spacer at node 2 in the following example is equal to

Note:  is the tangent vector at node 2 (= X1). are coordinates of the nodes 1 and 3.

Later in the form-finding analysis, the normal will be rotated according to the displacement of 
the 3 nodes. The degree of the rotation is calculated assuming nodes 1 and 3 are connected to 
the spacer node (2) by beams. The beams are pin-connected at the nodes 1 and 3 and fixed at 

node 2. The of the two beams are equal. The fixed end moment for the two beams at the end
of node 2 is calculated. The resultant of the moment at node 2 will rotate node 2, and this 
rotation is the one that rotates the spacer tangent vector at node 2. The rotation will be about 
the normal of the plane of the adjacent spacer legs.

The tangents of the end nodes of a free spacer are found (if required) by reflecting the tangent 
of the next internal node about the plane normal to the end spacer leg. Tangents are calculated 
every 10 cycles.

For the above portion of free spacer, assume the normal of the plane of the three spacer nodes 

is in the direction. The spacer force applied at node A is . So the spacer will 
move node A in the X1 direction only.
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The free spacer applies the spacer leg length rules at the start of analysis. The node positions are
adjusted at the start of the analysis to meet the rules by factoring the unstressed element 
lengths. On convergence, the node positions may not meet the leg length rules exactly. If this is 
proves to be a problem, consider replacing the free spacer with a bar spacer for a final stage 
form finding analysis starting from the converged form-found shape.

Bar Spacer

Bar spacer should run parallel to 1D tie elements with soap-film properties, and the two 
elements should have common nodes. No component of a bar spacer force is suppressed so a 
bar spacer influences the spacing of nodes, along the length of the soap-film tie, and the position
of the soap-film tie. The soap-film tie has zero stiffness, but the bar spacer has a small stiffness. 
Therefore forces may vary along the bar spacer. To maintain equilibrium post form-finding, bar 
spacer forces should be added to the tie pre-stress in the final model as spacer elements are 
only considered during form-finding analysis. The effect of the bar spacer on the final form-
found shape increases with the bar spacer stiffness.

The bar spacer is, in effect, a multi-noded bar super-element, or chain, with a low stiffness that 
complies with spacing rules for the nodes along its length (defined by the spacer leg length type)

For the above portion of Bar SPACER, assume the normal of the plane of the three spacer nodes 

is in the direction. The spacer force applied at node A is . So the spacer will 
move node A in the X1 and Y1 direction.

The bar spacer applies the spacer leg length rules by repeated analysis. The node positions are 
adjusted at the start of the analysis to meet the rules. On convergence, the node positions are 
adjusted along the length of the bar spacer, and the analysis repeated. This continues until the 
spacing rules are met.

The position of the nodes is adjusted by factoring the unstressed element lengths.

Spacer leg length type

There are three rules, or options, to control nodal spacing along a spacer, which can be selected 
when defining the spacer properties. These spacing rules are proportional, ratio, and projected 
ratio. Free and Geodesic spacers apply these rules to the initial leg length at the start of analysis 
but do not recheck on convergence. For spacers included in soap film structures, the ratio of the 
final leg length to the initial leg length will be approximately constant and the spacing rules will 

© Oasys Ltd 
2021 104



Oasys GSA

be met approximately. However if varying point loads or other constraints are applied along the 
length of the spacer the final spacing may be too approximate to be satisfactory. In this case the 
use of a Bar Spacer may be considered. For Bar Spacers, the spacing rules are checked on 
convergence, and the analysis is repeated until the leg length rules are met exactly.

The three options offered as leg length type are:

 Proportional – the final length of the spacer legs will be proportional to their original 
length. To achieve this, the initial length of each spacer leg is set to half the initial 
distance between end nodes.

 Ratio – the spacer leg length ratio will be equal to that specified, e.g. if the ratio is 
specified as 2, the final leg length of the 2nd element will be twice as long as the leg length
of the 1st and so on. If a ratio of 1 is specified, the initial length of all the spacer legs will 
be made equal.

 Projected-ratio – Specify an axis set in the spacer property table. If a user defined axis set
is not specified, the global axis set will be used. The spacer legs are projected onto the x-
y plane of the specified axis set. The program adjusts the initial length of the spacer such 
that the projected length of each spacer leg on the x-y plane follows the specified ratio 
rule. If a ratio of 1 is specified, the projected length of all legs will be equal. If a ratio of 2 
is specified, the projected leg length of the 2nd element will be twice as long as the 
projected leg length of the 1st and so on.
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2D Element Stresses and Forces
Stress in 2D Elements

Strain Definitions

The normal definitions of strain used are as follows

An alternative definition which fits more neatly in tensor form is

with the strain tensor defined as

The calculation of principal strains  follows from

The maximum shear strain is calculated from the principal strain as

or
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In a similar way to the definitions of average and von Mises stress a volumetric and effective 
strain can be calculated as

Stress Definitions

Stress can be considered as a tensor quantity whose components can be represented in matrix 
form as

where each term corresponds to a force per unit area. The following notation for the stress 
components is common

The principal stresses  are calculated as the roots  of the cubic

where the terms are stress invariants defined as

Alternatively the principal stress equation can be written

The maximum shear stress is calculated from the principal stress as
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Two other stress measures that are used are the average or hydrostatic stress and the von Mises
stress; these are defined as

Stress in 2D elements

The stress in 2D elements is calculated via the strains. The strains are calculated from the 

displacements using the strain displacement relationship (see 2D elements). Using the 
interpolation functions these can be calculated at any point in the element. Once the strains are 

calculated the stress can be calculated using the material elastic matrix  for example for and 
elastic isotropic material the material matrix is

Thus the strains are

and the stresses are

This can be used to evaluate the stress at any point in the element. However the stress is based 
on the strain which in turn is based on the displacement gradients in the element. Thus some of 
the strain terms in an element that has a parabolic displacement field are linear. It has been 
found that the best stress results are obtained by evaluating the stress at particular points (the 
points used for the element integration) and extrapolating the results to the nodes.

In order to have good stress results the mesh will have to be finer that the mesh required for the
displacement solution and the stress results are likely to be influenced by high displacement 
gradients in the element.
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Direct extrapolation of results

In the case of direct extrapolation a function is chosen to represent the variation of stress over 
the element based on the number of Gauss points. In practice this is used when there are 1, 3 or 
4 Gauss points. The corresponding polynomial functions are

For 1 Gauss point the values are assumed to be constant over the whole element so the Gauss 
point values are simply copied to the nodes.

For 3 Gauss points the values are the Gauss points are known so the following set of equations 
can be set up

This can then be used to calculate the coefficients 

For 4 Gauss points a similar approach can be used, but in this case the locations of the Gauss 
points are at

so the equations can be written in the form
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This can then be solved for the coefficients 

Once these are established the polynomial functions can be used to establish the values at any 
position on the element.

Least squares extrapolation of results

In this case a function chosen to fit through the points would imply a higher order polynomial 
than the one used to interpolate the geometry, so a least squares approach is used to find the 
polynomial to map the stresses from the Gauss points to the nodes. The interpolation functions 
used for 6 node and 8 node elements are respectively

The square of the error for any point is then

This is summed over all the Gauss points and then the derivatives with respect to the coefficients
are set to zero (selecting the coefficients that minimise the error). This leads to the matrix 
equation for 8 node elements

The 6 node version is the same except that the and terms are ignored. This can then be 
solved for the coefficients.

Stress-strain Relationships

The relationship between stress and strain depends on the type of problem

© Oasys Ltd 
2021 110



Oasys GSA

Problem Displacements Strain Stress

Plane stress

Plane strain

Axisymmetric

Plate Bending

General 

Where for beam and plate bending problems the relationship is between moment and curvature

The stress-strain matrices for isotropic materials are

Problem Stress-strain matrix

Plane stress

Plane strain

Axisymmetri
c

Plate 
bending
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General

The stress-strain matrices for orthotropic materials:

Problem Stress-strain matrix

Plane stress

Plane strain

Where

Axisymmetric
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Plate bending

General

Force in 2D Elements

The Timoshenko convention is used for forces in 2D elements. This means that a moment is 
based on the stress in the x direction. With the Timoshenko convention if a slab is in 
compression on the top face in both the x and y directions the moments are both negative. 
Consequently starting from the assumption that tensile stress is positive, we have the following 
relationships for the forces

and moments

Following from this a plate that has a positive in-plane stress in x/y will have a positive force 
resultant and a positive bending stress in x/y (i.e. positive stress at the top surface relative to the 
bottom surface) will have a positive moment.
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When the structure is linear these simplify to:

and

where the superscripts p and b refer to in-plane and bending stress terms.

When in-plane and bending thickness modifiers are user the in-plane forces are based on the in-
plane thickness and the moments and shear forces are based on the bending thickness. Stresses
are always based on the actual thickness of the element.
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Interpolation on a Triangular/Quad Facet
The r,s coordinates of a triangular facet can be determined from the use of interpolation (shape) 
functions. Let

These can be rewritten as

and then

Then

On a quadrilateral facet using the interpolation functions gives

these can be rewritten

Using the first of these gives

which can be substituted into the second to give

This can then be solved for r & s and then the interpolation function used as for the triangular 
facet.
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Loading
Beam Loads

The reference mechanical load is the point load; all the other mechanical load types can be 
established by integrating the results for a point load over the loaded part of the beam.

The basic approach to calculating the load on the beam for a force at position  is to consider 
the beam split at  into two separate beams. Flexibility matrices can be established for axial, 
torsional and flexural loading

There must be continuity of displacement and rotation between the two beams and the forces 
and moment must balance the applied load. This allows a set of equations to be set up for the 

sub-beams  and which can be solved for the shear force and bending moment at the loaded 
point.

Where the vector is respectively for unit force and unit moment

Once the force and moment at the loaded point have been established the end forces and 
moments (and hence the equivalent nodal forces) result from equilibrium of the two sub-beams.

The general distributed loading in the patch load, varying in linearly in intensity from position  

to position . The nodal forces and moments are then given by integrating the results for a 
point load

where  is the force due to a point load at  and

The tri-linear load option is simply a repeated set of patch loads.
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Beam Thermal Loads

The thermal loads allow for the introduction of load due to temperature variations in the beam 
elements. For an axial thermal loading the expansion of the element leads to axial forces, for 
thermal gradients through the thickness of the element both axial forces and end moments are 
induced.

where is the temperature coefficient of expansion,  is temperature and the subscript NA 
refers to the neutral axis.

Beam Pre-stress Loads and Lack-of-fit

Pre-stress and lack of fit loads are similar, but the definition differs. A pre-stress is considered as 
a force applied to the element at some position in the section relative to the neutral axis. A lack 
of fit is assumed to affect only the axial terms relating to the element. For a pre-stress of force 
and offsets of y and z the resulting nodal forces and moments are

For the lack of fit and the initial strain the nodal forces are respectively

Loads on pin-ended beams

When the ends of beam are not fully fixed, some adjustment has to be made to the forces and 
moments that are applied at the nodes and the pinned end cannot sustain any moment. The 
simplest case is when both ends are pinned so

The forces and moments are then modified to maintain equilibrium as follows
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for y/z.

When the element is pinned at one end only the corrections depend on the material properties 
in the general case

pin at end 1 pin at end 2

where

For a simple beam this reduces to

pin at end 1 pin at end 2

Projected Loads

When the load on a beam is distributed the total load can be based on the actual length of the 
element or on the projected length of the element. Thus a load normal to the x axis of the 
element would have a projected length equal to the beam length while a load parallel to the x 
axis of the beam would have a projected length of zero. In the general case of a load in the a 
direction defined by a unit vector  and where the beam load x axis is denoted the factor that
has to be applied to the load intensity, defined in terms of the angle between the two vectors, is
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2D Body Loads

The most common form of body loads are gravity loads. The general expression for body loads is
given by

where integration is over the volume of the element. Using Gaussian integration this can be 
expressed as

Where are the Gaussian weights and is the determinant of the Jacobian.

2D Face Loads

Face loads can be constant or varying across the face of an element. For a point load on the face 
the load vector is

This can be generalised for the distributed case giving the load vector as

where integration is over the surface of the element. Using Gaussian integration this can be 
expressed as

Where are the Gaussian weights and is the determinant of the Jacobian.

2D Element Thermal Loads

Thermal loads can be either a constant temperature rise in the whole element or a temperature 
gradient, varying over the surface element. To evaluate the equivalent nodal forces the 
temperatures have to be converted to strains, using the temperature coefficient of expansion. 
The strains are then related to the stress through the material matrix and then the internal 
stresses are integrated over the element. The thermal effects are the same in all directions so 
there are no shear strains introduced.

For in-plane effects (constant temperature) the strain is
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For bending effects (temperature gradients) the strain and stress are

These are converted to stresses through the material matrix

2D In-plane Loads

In-plane loads break down into two categories, pre-stress loads and initial strains. Pre-stress 
loads are defined as a force per unit width in either x, y or both x and y directions, along with an 
offset from the neutral axis. Initial strains are defined in either x, y or both x and y directions, but
no offsets are permitted. The pre-stress loads can be converted directly to a set of element 
stresses, which are integrated over the element to get the nodal forces. The offset force gives 
rise to a moment on the element so

The initial strains can be converted to stresses in a manner analogous to that used for thermal 
loads.

Grid Loads

Grid loading is loading applied in space by means of a grid plane. There are three basic types of 
grid loading: point loads, line loads and area loads. The area loads can be subdivided into loads 
on the whole grid plane and those on a defined area bounded by a polyline defining a closed 
polygon. The panels to which the loads are applied can be one-way spanning or two-way 
spanning or multi-way spanning.

Grid Cells

A loading grid is used to integrate area loads and for distribution of grid point loads on to beam 
elements around the panel. The grid used needs to be fine enough to give an adequate 
representation of the load, so it needs to be based on the size of the panels that are loaded. The 
size and shape of the panels can vary significantly, so a robust way of determining the grid size is
required.

For a square panel the load can probably be represented adequately by a 4 × 4 grid, but for a 
long thin panel the same grid would be unsuitable. The grid size is established as follows:

Calculate the area of the panel and set a representative panel dimension to be the square root 
of this. Then the grid size is this value divided by the grid refinement factor. This defaults to give 
typically 4 cells along the edge of a square panel. The user can adjust the grid refinement factor 
to a lower or higher value if required.
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For a series of aspect ratios with a refinement factor of 4 the mesh densities are as follows.

Aspect ratio Cell density

1 : 1 4 × 4

1 : 2 2.83 × 5.65

1 : 4 2 × 8

1 : 10 1.265 × 12.65

1 : 16 1 × 16

The calculation of the loading grid size can then be calculated on a panel by panel basis and the 
final size selected to give adequate representation on the smaller panels, with not being skewed 

unduly by a few very small panels. To ensure that this is the case the average, , and standard 
deviation, , of the individual panel loading grid sizes can be calculated and the loading grid size

set to .

Grid Point Loads

The way in which the loads are applied depends on the type of structure as represented by the 
span type.

One way spanning loads are calculated by assuming the load applied to a ‘plank’ spanning from 
one side of the panel to the other in the span direction. In the case of loading over the whole 
panel this means that the load per ‘plank’ is the product of the load intensity and the plank 
length, split evenly between each end. The algorithm replaces the plane by a line with a load 
intensity applied to each end of the line.

The starting point for the two way distribution of load is to consider a circle of unit radius 
centred on the load point. The actual intensity at the edges is calculated by extrapolating from 

this point using a  function where  is the distance from the load point to the edge of the 
panel.

We can satisfy these requirements with a distribution of the form

We require that there is force and moment equilibrium. The form of these functions satisfies the 
moment equilibrium requirement and we can look for a solution for an arbitrary load. The term

takes account of the aspect ratio of the panel in determining the split between the long and 

short directions. If the panel is square we expect the  coefficient to be 0 and 1 for an infinitely 
long panel. To define the coefficient and phase angle we define a length direction for the panel 
and a width direction. The length is chosen to be in the direction of the sum or difference of the 
longest diagonals, whichever has the greater magnitude. The width direction is normal to the 
length direction. For a rectangular panel this accords with the normal definition of length and 
width.
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We then define values as follows:

,  – maximum and minimum dimension from point to panel edge in length 
direction

,  – maximum and minimum dimension from point to panel edge in width 
direction

 – the angle of the width direction from the grid x axis

then we can calculate the coefficients from

The load intensity at the edge of the panel is then calculated from the distance of the point on 
the edge from the load point.

If we consider a circle at unit radius from the grid point load we have a load intensity function of 
the form

This must be mapped on to the surrounding elements. We can use the grid cell size, , when 
establishing the size of the loaded patches on elements around the panel boundary.

The distribution of point loads can then be determined at a series of point that are a distance c 
apart along the elements on the boundary with a minimum of a start and end point on each 
boundary element. The number of segments for the load distribution can then be determined 

from the grid cell size and element length, 

For the default value of grid load refinement and uniform sized square panels this will give four 
load patches along each side of the panel. The length of the patches is then
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Consider two lines from the load point to the start and finish of the element segment. These will 

be at angles  and . The load carried by this segment must then be

where  is the load intensity. The angle at which this applies is determined from

If the vectors  and  are vectors from the load point to the ends of the beam segment then 

the grid load  can be thought of as a point load along the vector , at an angle  from .

The loading function contains terms of the form

which integrates to give

The load 

and load moment 
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This point load must then be adjusted to allow for the distance of the beam from the load point. 

This can use a  factor to preserve moment equilibrium. This ‘point’ load can then be 
represented as a linearly varying patch load along the segment length. If the projection of the 
Load point on to the element is at position  along the segment and the ends are i and j then 
the equilibrium conditions require that

Knowing  these equations can be solved for  and .

Grid Area Loads

When a grid area load is applied in a multi-spanning panel the approach is to consider the 
loading to be represented as a grid of “point loads” distributed over the loaded area. The 
distributed load is then accounted for by summing all the “point loads”.

Having established the loading grid size then we can then work through the grid and determine 
if a cell is loaded or not.

Where a cell is bisected by the load boundary then the load intensity is reduced in proportion to 
the loaded area and adjustment is made for the position of the load. Where a cell is bisected by 
the structure boundary the point of application of the load must be moved so that the load is 
applied to the “structure” and not in “space”. In these cases the centroid of the trimmed loading 
grid cell is calculated and the (reduced) load on the whole cell applied at the recalculated 
centroid.

Where a cell is bisected by a panel edge the load is applied to the panel at the centroid of the 
grid cell.

For the cases where this is too coarse the grid refinement factor can be increased.
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Grid area loads can be projected. When this is the case the load intensity is reduced depending 

on the projected area of the panel to the loading axis. If the normal direction of the load is 

and the normal direction to the panel is . Then the load intensity is adjusted by

When the load is not projected then the intensity depend on the panel area relative to the panel 

area projected on to the grid plane (normal ) so the intensity has to be modified by

When the panels lie in the grid plane this factor is unity.

Note: If a polygon which results in a loaded cell being split into two regions, the whole cell is 
assumed to be loaded. This results in a (slight) overall increase in the applied load. This 
restriction is in order to keep the load distribution as fast as possible.

Grid Line Loads

Grid line loads are treated in a similar manner to grid area loads in that they are broken down 
into a series of grid point loads along the length of the line. The same grid cell size is used to 
determine the number of segments along the line and thereafter the procedure is the same as 
for area loads.
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Mass Distribution
The calculation of the mass and inertia of the structure are as follows

where the summations are over all the nodes and are the coordinates of the node relative
to the centre of mass.

If the mass option is set to ignore the element mass, this calculation is only carried out over the 
nodal masses. If an additional mass due to load is set the load vector resulting from the load 
description is calculated and the required component is extracted scaled and converted to mass

where is the scale factor, j is the specified component and is the gravity value.
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Material Models
Isotropic material

The material properties are

 – Young’s modulus

– shear modulus

 – Poisson’s ratio

The general elasticity matrix is

The shear modulus is related to the Young’s modulus and Poisson’s ratio through

Orthotropic material

The material properties are

 – Young’s modulus in the x direction

 – Young’s modulus in the y direction

 – Young’s modulus in the z direction

 – shear modulus in the xy plane

 – shear modulus in the yz plane

© Oasys Ltd 
2021 127



Oasys GSA

 – shear modulus in the zx plane

 – Poisson’s ratio, y direction strain generated by unit strain in the x direction

 – Poisson’s ratio, z direction strain generated by unit strain in the y direction

 – Poisson’s ratio, x direction strain generated by unit strain in the z direction

The other three Poisson's ratios  can be obtained from the following relationships.

The general elasticity matrix is

The von Mises stress is

Yield occurs when

The yield and ultimate stress and the hardening parameters are not used in linear analysis. For 
non-linear analysis in GSA, only the yield stress is used and ultimate stress and hardening 
parameters are ignored.

In general, material yielding follows the line defined by the hardening modulus. Either isotropic 

hardening  or kinematic hardening  can be defined.
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If the hardening parameter, is 1 (isotropic hardening as shown above) the yield stress retains 
its maximum value on reversal of stress. A value of 0 corresponds to kinematic hardening, where
the diameter of the yield surface remains constant so on reversal of stress the material yield 
when the stress reversal is twice the original yield stress.
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Patterned Load Analysis
By the principle of superposition for linear elastic structural systems, the internal force in a 
section can be calculated as

where,  is the floor area domain across the x-y plane, is the influence surface function 
across

the x-y plane, and  is an un-factored distributed load function varying across the x-y plane.

For the maximum internal force in a section  max resulted under a range of distributed load

and can be calculated as

where, is a binary function related to the influence surface  as

And thus the equation can further be rewritten as

The floor area domain can always be separated into a series of smaller and non-overlapping 

area , which exclusively covers the entire area. Assume the sign of in each individually 

separated area  does not change, i.e. I is always positive or negative across the x-y plane 

within an area , then the equation can be expanded as

which can be further simplified as an absolute sum function

where by definition
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And similarly, the minimum internal force in a section can be derived as

In most situations, and differ only by a scalar factor, which is related to the load factor 
of safety in ultimate limit state design. Putting

the equations can be simplified as

By comparing these equations to first equation, it can be seen that can be evaluated 

directly from the analysis with all area fully loaded, and can be evaluated directly from the 

analysis with load being only applied to the area , which means the equations can be further 
simplified as

This item was written by Ir. Dr. Don Y.B. Ho of Ove Arup & Partners, Hong Kong Ltd and is reproduced here with 
permission
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RC Slab
Introduction

RCSlab is a design postprocessor within GSA for reinforced concrete two-dimensional elements 
of uniform thickness subject to any combination of in-plane axial or shear force and out-of-plane
bending moment and torsion. The calculations can be made following the principles of most of 
the codes used within Arup. RCSlab is unable to allow for out-of-plane shear and through-
thickness forces.9

The input to the postprocessor comprises applied forces and moments, section depth, 
reinforcement positions, and material properties. The reinforcement orientations can be in 

general directions, referred to as  and , which need not be orthogonal. The results 
comprise either areas of reinforcement for each face of the section in the two specified 
directions, or else an indicator to the effect that RCSlab is unable to find a solution for the 
current data. Early versions of the program were known as RC2D.

Data Requirements

Each run of RCSlab obtains the following data in any consistent set of units from the GSA analysis
or RCSlab design data as appropriate:

ultimate applied axial force per unit width in the x-direction

ultimate applied axial force per unit width in the y-direction

ultimate applied bending moment per unit width about the x-axis

ultimate applied bending moment per unit width about the y-axis

ultimate applied in-plane shear force per unit width

ultimate applied torsion moment per unit width

additional eccentricity – considered as acting in both senses

minimum eccentricity – considered as acting in both senses

section thickness 

position of top reinforcement centroid in direction 1 

9 This item is based on a Notes n Structures written by Ian Feltham [an Arup internal publication] (2007) and is 
reproduced here with permission
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position of top reinforcement centroid in direction 2 

position of bottom reinforcement centroid in direction 1

position of bottom reinforcement centroid in direction 2 

 angle of reinforcement in direction 1, anticlockwise with respect to x-axis

angle of reinforcement in direction 2, anticlockwise with respect to x-axis

minimum top reinforcement to be provided in direction 1 

minimum top reinforcement to be provided in direction 2 

minimum bottom reinforcement to be provided in direction 1

minimum bottom reinforcement to be provided in direction 2

compressive design strength of concrete 

compressive design strength of top layer of concrete 

compressive design strength of bottom layer of concrete 

cracked compressive design strength of concrete 

uncracked compressive design strength of concrete 

tensile design strength of concrete 

compressive plateau concrete strain 

 maximum axial compressive concrete strain 

 maximum flexural compressive concrete strain 

proportion of depth to neutral axis over which rectangular stress block acts

maximum value of x/d, the ratio of neutral axis to effective depth, for flexure:
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elastic modulus of reinforcement

design strength of reinforcement in tension

design strength of reinforcement in compression,

maximum linear steel stress of reinforcement

yield strain of reinforcement in tension 

yield strain of reinforcement in compression 

design value of maximum strain in reinforcement

maximum permitted angle between applied and resulting principal stress

In addition, the program needs to know whether to use, where appropriate, the faster approach 
and, if so, what the maximum area of reinforcement so calculated should be before the rigorous 
approach is used.

Within RCSlab the reinforcement positions are measured with respect to the mid-height of the 
section, the positions being measured positively upwards. The reinforcement angles are 
specified with respect to the x-axis and measured positively in an anticlockwise direction looking 
from above. It should be noted that the concrete is assumed to have zero tensile strength in the 

analysis; the tensile strength,  , is only used to calculate the compressive strength when 
tensile strains are present.

The results of each run consist of the required area of reinforcement, negative if tensile, in each 
direction in the top and bottom faces or an error flag indicating that a solution could not be 
found.

Other Symbols Used in Theory

stress

proportion of total thickness comprising each outer layer

strain

angle of principal compressive stress and strain, measured anticlockwise with respect to 
x axis

Suffices

A relating to pass A

B relating to pass B
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C relating to pass C or compression-only reinforcement

T relating to tension-only reinforcement

a applied

b bottom layer or face

c concrete

e effective

m middle layer

n general direction = 1 or 2

s steel

t top layer or face

z at level of reinforcement

1 direction 1

2 direction 2

> principal direction with greater compression or lesser tension

< principal direction with greater tension or lesser compression

RC Slab Sign Convention

Within RCSlab the sign convention is as shown below; note that although it is different from that 
used by GSA, the interface converts as necessary:
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MyyMyy

Mxx

Mxx

Mxy

Mxy

Nxy

Nyx

Mxy

Nyy

Nxx

Mxy Z Y

X

Compression and sagging moment are positive.

RC Slab Analysis Procedure

The following summarizes the procedure followed by RCSlab:

1. Adjust, where necessary, the applied moments for minimum eccentricities.

2. Split the section into three layers with the central layer unstressed and the outer 
layers taking in-plane stresses, the thicknesses corresponding to an acceptable 
neutral axis depth; calculate the stresses applied to each layer.

3. Calculate the stress to be taken by the concrete in each layer and the stress from each
layer to be taken by reinforcement.

4. Calculate the force to be taken by each of the four sets of reinforcement (two faces, 
two directions) taking into account their positions relative to the layers.

5. Determine section strains compatible with the neutral axis depths implied by the layer
thicknesses in 5.0.2 and the concrete strains in the outer layers from 5.0.3 for top and 
bottom layers.

6. Determine reinforcement strains compatible with the section strains.

7. From the strains, calculate the stress in each of the four sets of reinforcement.
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8. Knowing the force to be taken by each of the four sets of reinforcement and the 
stress in each set of reinforcement, calculate the reinforcement areas required; these 
should not be less than the specified minimum values.

9. Repeat as necessary from 5.0.2, adjusting the layer thicknesses to achieve the 
minimum total area of reinforcement.

10. Where in-plane effects dominate, repeat from 5.0.2 adopting a model with the central 
layer stressed.

11. The design reinforcement areas correspond to the layer arrangement giving the 
minimum total area of reinforcement.

12. To speed up the calculation, an option is available to adopt a non-iterative technique 
where the loading is primarily either in-plane or out-of-plane.

Inclusion of moments resulting from additional and minimum eccentricities

The applied moments are adjusted to take into account the additional and minimum 
eccentricities of applied axial forces. The additional eccentricity, which can be used to model 
tolerances and second-order effects, is determined by the user; applied bending moments are 
increased by compressive principal axial forces but are not adjusted for tensile principal axial 
forces. The components of in-plane force in the orthogonal directions for use with the additional 

eccentricity, , and , are calculated assuming the angle between the principal 
direction and the x-axis is unchanged.

2θ 2θ

(Nxx, Nxy)

(Nyy, -Nxy)

(Nxx,add, Nxy,add)

(Nyy,add, -Nxy,add)

The default value of the minimum eccentricity, which can be overwritten, is taken from the 
chosen design code; this value, and all other code-dependent values, are given in Appendix 3. If 
the absolute value of the applied moment exceeds the sum of the additional and minimum 
eccentricity moments for Mxx, Myy and Mxy, then the applied moments are increased in magnitude
by their respective additional moments. Otherwise two sets of applied moments are calculated, 
corresponding to eccentricities applied in the two senses.
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where j takes the value of -1 for the first set and +1 for the second set.

For example, if the applied, additional, and minimum eccentricity moments were 75 kNm, 
50 kNm and 60 kNm respectively, the design moments for the two sets would be 
75 – 50 - 60 = -35 kNm and 75 + 50 = 125 kNm respectively. It should be noted that no specific 
allowance is made for slenderness.

Division of section into layers

The section is divided into three layers, each with constant in-plane stress. The outer layers both 

have a thickness of , where  is the proportion of the total section thickness, ; the inner 

layer is therefore of thickness . In-plane forces are resisted either by the outer layers 
alone or, if there is sufficient in-plane compression, by all three layers. The outer layers also 
resist the moments resulting from out-of-plane forces.

 

(1-)h       N/h+2M/[(1-)h2]

h             N/h-2M/[h2]

h

N M

Stress with central layer stressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed

(1-)h       N/h+2M/[(1-)h2]

h             N/h-2M/[h2]

h

N M

Stress with central layer stressed

(1-)h       N/h+2M/[(1-)h2]

h             N/h-2M/[h2]

h

N M

Stress with central layer stressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed 

(1-)h       N/h+2M/[(1-)h2]

h             N/h-2M/[h2]

h

N M

Stress with central layer stressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed

(1-)h       N/h+2M/[(1-)h2]

h             N/h-2M/[h2]

h

N M

Stress with central layer stressed

(1-)h       N/h+2M/[(1-)h2]

h             N/h-2M/[h2]

h

N M

Stress with central layer stressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed

h       N/[2h] + M/[(1-)h2]

h

N Mh       N/[2h] - M/[(1-)h2]

Stress with central layer unstressed

(In this figure, N represents Nxx, Nyy or Nxy and M represents Myy, Mxx or Mxy respectively.)

The program determines iteratively the value of α that gives the lowest total area of 

reinforcement, . Calculations are first performed for the condition with the central layer 
unstressed, and then repeated for the condition with it stressed, although the latter results are 
only valid if there is no tension reinforcement, or if tension reinforcement is required in both 
faces, in a particular direction.

The minimum valid value for α is zero; any code-specified maximum lever arm is converted into 
an equivalent maximum strain in the reinforcement, which is explicitly checked. Where the 
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central layer is unstressed, and the axial compression in the reinforcement direction with the 

larger force eccentricity is less than , the maximum valid value is given by

; where the axial compression in this 

direction exceeds , ; for intermediate values of axial compression, the value

of  is linearly interpolated between these two extremes. Where all three layers are stressed, 

the maximum valid value for α is given by .

The initial value of is taken as . If this value does not give a valid result, calculations are

performed for  and . If neither of these values results in a valid result, 
the additional four values at the eighth points of the range are calculated. This process is 
repeated, using sixteenth points etc, until there is at least one valid result or the interval between
adjacent values of α falls below a limiting value of 0.02.

Once a valid value of α has been determined, only the values lying between this value and the 
previously calculated values of α on either side are considered, halving the interval. This is 
repeated, halving the interval for each turn, until it falls below a limiting value of 0.005.

In the following example, it has been assumed that , , valid results are 

obtained for , , and, for simplicity, the area of reinforcement 

increases linearly with the difference between  and . The optimisation process stops when
the interval is less than 0.005. The program would calculate areas of reinforcement for the 
following values of α. Values of α in italics indicate no valid solution; values in bold indicate this is
a revised optimum value.

Values of α for which reinforcement areas 
calculated

Current value of 
αopt

Current value of 
interval

0.25 - 0.25

0.125 0.375 - 0.125

0.0625 0.1875 0.3125 0.4375 0.4375 0.0625

0.40625 0.46875 0.4375 0.03125

0.421875 0.453125 0.4375 0.015625

0.4296875 0.4453125 0.4296875 0.0078125

The following procedure must be completed for each trial value of .

Calculation of stress to be taken by reinforcement in a layer

The design strength of the concrete, , depends on the extent of cracking and needs not be 

the same in different layers. For each layer, the principal applied stresses,  and  with 
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being more tensile, are calculated from the orthogonal stresses. If  is compressive, the 

uncracked concrete strength, , is used. Otherwise the design strength depends on the ratio 

of fa< to the tensile strength of the concrete, ; the strength is calculated as

, but not less than the cracked concrete strength, . The concrete 
strengths are code dependent.

If  is not tensile and  is not greater than , then reinforcement is not required to take 
any stress from this layer. Otherwise, the reinforcement must take sufficient stress to achieve 
equilibrium without either overstressing the concrete or requiring it to take tension. The general 
expressions are given in Appendix 1.
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Consider a 2D element of uniform 
thickness with applied in-plane 
normal stresses fx and fy and shear 
stress fxy. Assume that the section 
cracks in a plane at angle  to the x 
plane, measured anticlockwise. 
The applied forces are resisted by 
the concrete, acting in 
compression, and reinforcement in 
the orthogonal directions taking 
tension or compression as 
necessary.
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Consider a 2D element of uniform 
thickness with applied in-plane 
normal stresses fx and fy and shear 
stress fxy. Assume that the section 
cracks in a plane at angle  to the x 
plane, measured anticlockwise. 
The applied forces are resisted by 
the concrete, acting in 
compression, and reinforcement in 
the orthogonal directions taking 
tension or compression as 
necessary.

The following diagrams illustrate the situation within a layer where the reinforcement is aligned 
with the x and y directions.

 

fx px

fy

py

pv

fxy

fxy

pv

fsx

fsy

s

s/tan

Consider equilibrium of the triangle below 
the crack; fsx and fsy are the stresses 
taken by reinforcement:

•Resolving horizontally

s/tan.(fx+fsx) = s.fxy

 fsx = fxy .tan - fx

•Resolving vertically

s.(fy+fsy) = s/tan.fxy

 fsy = fxy /tan - fy

The angle at which the cracks form under the design loads, , is not generally equal to the angle
of the initial cracks, which depends on the direction of principal tensile stress. As reinforcement 
yields, the angle of cracking rotates, and this angle may be limited by a design code or the user. 
RCSlab selects the angle, complying with any limitation, which results in the lowest total area of 
reinforcement. This often corresponds to the angle that also gives rise to the minimum stress in 
the concrete.
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 s/tan

py

fy

fx px

fxy

fxy

pv

pv

fsx

fsy fc>

Consider equilibrium of the triangle with a 
face normal to the crack; fc> is the stress in 
the concrete:

•Resolving horizontally

s.(fx+fsx) + s/tan.fxy = (s/sin.fc>).sin

 fc> = fx+fsx + fxy/tan

= fxy.tan + fxy/tan

fc> = 2fxy/sin2

s


s/tans/tan
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Consider equilibrium of the triangle with a 
face normal to the crack; fc> is the stress in 
the concrete:

•Resolving horizontally

s.(fx+fsx) + s/tan.fxy = (s/sin.fc>).sin

 fc> = fx+fsx + fxy/tan

= fxy.tan + fxy/tan

fc> = 2fxy/sin2

s


ss


If both and are positive, tensile stress must be taken by reinforcement in both x and y 

directions. The lowest total stress is required when equals 45, for which angle ,

 and .

Mohr’s circles provide a useful tool for determining the stress to be taken by the reinforcement 
and the maximum stress in the concrete. The circle representing the compressive strength of 
concrete has principal values of the origin and the concrete design strength. If this circle does 
not encompass the circle representing the applied stress, reinforcement is required.

 shear stress

compressive stress

compressive strength 
of concrete (fcd)

principal 
tensile 
stress   
(fa<)

applied stress

X (fx,fxy)

Y (fy,-fxy)

principal compressive stress (fa>)

Reinforcement is required because the applied stress circle does not lie 
within the circle representing the strength of cracked concrete

shear stress

compressive stress

compressive strength 
of concrete (fcd)

compressive strength 
of concrete (fcd)

compressive strength 
of concrete (fcd)

principal 
tensile 
stress   
(fa<)

principal 
tensile 
stress   
(fa<)

applied stress

X (fx,fxy)

Y (fy,-fxy)

principal compressive stress (fa>)

applied stressapplied stress

X (fx,fxy)

Y (fy,-fxy)

X (fx,fxy)

Y (fy,-fxy)

principal compressive stress (fa>)

Reinforcement is required because the applied stress circle does not lie 
within the circle representing the strength of cracked concrete

The stress taken by the reinforcement is subtracted from the applied stress to give a residual
stress in the concrete, which must always fall within the circle representing its compressive 
strength. If this is not achievable, then it is not possible to reinforce for the applied stress with 
reinforcement in the directions chosen; the reinforcement must be orientated closer to the 
principal directions, or else stronger concrete should be used. If the reinforcement is aligned 
with the x and y axes, then the offsets representing the stress taken by the reinforcement are 
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horizontal; otherwise the offsets are at an angle with the vertical offsets equal in magnitude but 
of opposite sign.

Calculation of forces to be taken by reinforcement

Having determined the stresses to be taken by reinforcement in all three layers, the forces in the
four sets of reinforcement must be determined considering equilibrium. The differences 
between the centroids of the stressed layers and the positions of the reinforcement must be 
taken into account.

 shear stress

compressive stress

Note that for =45 , the stress taken by x-direction reinforcement is equal to (fxy- fx) 
and that taken by the y-direction reinforcement is equal to (fxy- fy)

2

stress in concreteY (fxy,-fxy)

X (fxy,fxy)
X (fx,fxy)

applied stress

Y (fy,-fxy)

fc> (must be less than fcd)

fc<

compressive strength 
of concrete (fcd)

stress taken by y-direction reinforcement

stress taken by x-direction reinforcement

shear stress

compressive stress

Note that for =45 , the stress taken by x-direction reinforcement is equal to (fxy- fx) 
and that taken by the y-direction reinforcement is equal to (fxy- fy)

2

stress in concreteY (fxy,-fxy)

X (fxy,fxy)

stress in concretestress in concretestress in concreteY (fxy,-fxy)

X (fxy,fxy)
X (fx,fxy)

applied stress

Y (fy,-fxy)

applied stressapplied stress

Y (fy,-fxy)

fc> (must be less than fcd)fc> (must be less than fcd)

fc<fc<

compressive strength 
of concrete (fcd)

compressive strength 
of concrete (fcd)

compressive strength 
of concrete (fcd)

stress taken by y-direction reinforcementstress taken by y-direction reinforcementstress taken by y-direction reinforcement

stress taken by x-direction reinforcementstress taken by x-direction reinforcementstress taken by x-direction reinforcement

If this calculation is undertaken in one stage, anomalies could occur such as tension 
reinforcement being required where the surrounding concrete is in biaxial compression. To 
avoid this, the calculation is made in three stages.

The procedure works better if the larger moment results in tension on the bottom. If the larger 
moment results in tension at the top, the section and applied forces are inverted before the 
calculation is undertaken, and the results inverted at the end.

In stage A, the forces required in the top steel, , are calculated assuming that the stresses to 

be taken by the bottom reinforcement are distributed uniformly across the bottom layer, . 
This is shown diagrammatically below; there would of course be an equivalent diagram for the 
second steel direction. The overall distribution of concrete and steel stresses in the bottom layer 

is then rechecked to see whether any of  can in fact be resisted by the concrete; this 

calculation results in stresses of to be taken by the bottom reinforcement.
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In stage B, the forces required in the bottom steel, , are calculated returning the top 

reinforcement forces to stresses distributed uniformly across the top layer, . The overall 
distribution of concrete and steel stresses in the top layer is then rechecked to see whether any 

of can be resisted by the concrete; this calculation results in stresses of  to be taken by 
the top reinforcement.

 Stage B

fsbB

NstA
zt

h(1-)/2

fstB

NsbB

zb

h(1-)/2redistributed

to

Stage B
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NstA
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h(1-)/2
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h(1-)/2
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to
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to

In the final stage, C, any reinforcement, top and bottom, required to take the modified stresses 
in the top layer is calculated. Considering the top layer last, there will be places where no top 
steel is required. Although stage C could result in bottom steel in locations where it would be 
unnecessary with further rationalisation, the reinforcement areas would be small and usually 
less than nominal bottom steel.

 Stage C

fstC

NsbB

zb

h(1-)/2

NsbC

NstC
zt

zb

redistributed

to

Stage C

fstC

NsbB

zb

h(1-)/2
fstC

NsbB

zb

h(1-)/2

NsbC

NstC
zt

zb

redistributed

to

redistributed

to

Although this three stage approach calculates reinforcement forces reasonably economically, it 
may result in small differences in the areas of top and bottom reinforcement for pure axial load.

Determination of section strains compatible with
concrete strains in outer layers

To determine the four sets of reinforcement areas
required to take these sets of forces, a design strain,
compatible with the concrete stress blocks, is needed for
each set. The first stage of calculating these strains is to
determine the compressive strains at the outer or inner
boundaries of the concrete stress blocks. The calculation
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of the principal compressive strains at the top is described below; a corresponding procedure is 
used to estimate the principal compressive strains at the bottom.

Although at this point in the procedure, principal compressive stresses in the concrete have 

been determined for the top, , and bottom, , layers, the directions of these two principal

axes,  and , will not generally be aligned. In order to estimate the strain profile for the top 

layer, , the stress in the bottom layer in the same direction as , is calculated.

Knowing  enables the compressive principal strains in the top layer to be calculated. 

If  then the more 

compressive strain, , is at the top of 
the section and taken as the axial limiting

strain, 

 

cax

strain

h

h fc>t

fc>tb

stress

cax

strain

cax

strain

h

h fc>t

fc>tb

stress

h

hh fc>t

fc>tb

stress

If then is at the
centre of the top block and calculated as 
the compressive plateau strain of 

concrete, , factored by .

h/2

strain

trans
tbc

tc

f

f






fc>tbh

h fc>t

stress

If , is at the top
of the section and calculated so that it 

does not exceed the limiting strain, , 

and that the axial limiting strain, , is 
not exceeded at a position

 from the face, assuming a
strain at the centre of the bottom block 

of factored by .

h/2

cu

cax

(cax/cu)h

c>tb

strain

h

h fc>t

fc>tb

stress

The maximum compressive strain on the more

compressed face can exceed even if the 
maximum compressive stress is less than the 

concrete strength since the ultimate strain 
could be obtained with a smaller stress block,

, but more favourable lever arm
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strain
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fc>tb

c>tb ctrans cucax

Assumed stress-strain relation for concrete

strain

stress

fc>t

fc>tb

c>tb ctrans cucax
strain

stress

fc>t

fc>tb

c>tb ctrans cucax

Assumed stress-strain relation for concrete

For all conditions, the less compressive principal strain, , is taken at the same level as . If 

the less compressive principal stress, , is compressive, then , is taken as factored 

by , where is the less compressive principal stress in the top block. The key 
concrete strains are code-dependent.

Determination of compatible reinforcement strains

Having estimated the concrete strains, the next stage is to determine compatible reinforcement 
strains. There are three different procedures for calculating the reinforcement strains, the choice
of which depends on the relations between the reinforcement forces, summarized in the 
following table. Different procedures may be appropriate for each face and direction.

For directions with flexure, the neutral axis is taken as from the compression edge, where

 is the ratio of the depth of the rectangular stress block to the depth of the neutral axis, which 
is code-dependent.

Reinforcement 
requirements:

C = compression

N = none

T = tension

U = none; concrete 
unstressed

Procedure
Principles in determining 
reinforcement strain

Face considered Opposite face

Direction 
considered

Other 
direction

Direction 
considered

Other 
direction

C

T

T

C

Any

T/U

T/U

Any
A

Principal tensile strain chosen 
to give minimum area of 
reinforcement; calculations 
made at level of compression 
reinforcement.

Of the remainder:

T T/U T/U T/U B Strain compatibility not 
required since both faces in 
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T C/N T/U C/N
tension and no neutral axis in 
other direction.

All others C

If concrete cracked, boundary 
strain calculated to be 
compatible with principal 
compressive strain on 
opposite face and neutral axis 
depth consistent with depth 
of stress block. Strain at 
reinforcement level 
interpolated from boundary 
strains.

The procedures are described below in detail.
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Procedure A

The principal tensile strain is calculated so that the total area of reinforcement in this layer is at a
minimum. Note that if the tensile strain is not large enough, the tensile reinforcement will be 
working at a low stress, or even be in compression, but if the tensile strain is too large, the 
compressive reinforcement will be working at a low stress, or even be in tension.

The formulae to calculate the optimum value of the tensile strain are given in Appendix 2. The 
calculation is made at the level of the compression reinforcement. Although the tension 
reinforcement will be at a slightly different level, it is assumed that the strain in it is 
approximately equal to the strain in its direction at this level; since the reinforcement in the 
opposite face in the same direction will always be in tension, this should be a reasonable 
assumption.

22

21

2

shear stress

compressive 
stress

X

Y

fc>t
fc<t

2

1

stress in concrete

22

21

2

shear strain / 2

compressive 
strain

X

Y

>t1
<t1

2

1

strain in reinforcement & concrete

compressive strain in 
reinforcement direction 1

tensile strain in 
reinforcement direction 2

maximum 
compressive 
strain in concrete

Note that principal stresses and strains are aligned
The notation assumes that this is the top layer with compression reinforcement in direction 1

Relations between stresses and strains at the level of the top reinforcement, 
direction 1, with procedure A 

To estimate the principal compressive strain at the level of the compression reinforcement, the 
variation in magnitude and direction of the principal compression between the top and bottom 
layers must be considered. For these preliminary calculations, the magnitude of the principal 
tensile strain is taken as equal to that of the principal compressive strain. The strains in the 
reinforcement directions are calculated using the procedure in the figure below for both top and
bottom layers at their appropriate block boundary; from these strains, the value at the level of 
the compression reinforcement is linearly interpolated. From the normal and the shear strains at
the level of the compression reinforcement, the magnitude and orientation of the principal 
strain at this level can be estimated.
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Estimating magnitude and orientation of principal strain in concrete at level 
of compression reinforcement with procedure A

h/2

ztn

bn

ztn

where >t < trans

tn

h/2

ztn

tn

bn

ztn

where >t > trans
>t<t

tn

2(n-t)

>t.cos2(n-t)

Minimum strain, <t, assumed to be
->t for this calculation 

>t.sin2(n-t)

From εztn and the corresponding shear strain, 
the magnitude and orientation of the principal 

strain at the level of the compression 
reinforcement, ε>zt, can be estimated

N

The final stage of calculating reinforcement stresses makes allowance for the area of concrete 
displaced by compression bars by subtracting the concrete stress at the level of the 
reinforcement from the steel stress. To compensate for this when determining the optimum 
tensile strain with procedure A, a force, estimated to equal the force in displaced concrete, is 
added to compressions. This is achieved by factoring the compression by:

2(θn-ϕ)fc>t

minimum 
principal stress 
is always zero 

since tensile 
reinforcement 

required

stress in concrete

minimum strain 
assumed to be  

- >tn for this 
calculation

>tn

strain in reinforcement & concrete

fc>tcos2(θn-ϕ) >tncos2(θn-ϕ)

2(θn-ϕ)

N N

Procedure B

This procedure is adopted when strain compatibility is not required for tension reinforcement; 
the full design strength of the reinforcement is used.

Procedure C

The first stage of this procedure is to calculate the tensile strain in the compression block at 
either its surface or inner boundary, as appropriate, in the directions of the reinforcement. If the 
stress block is in biaxial compression, the strain is determined from the concrete stress, but if it 
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is cracked, the strain compatible with the principal compressive strain on the opposite face and 
the depth of the neutral axis is determined.

Calculating strain in reinforcement directions, ctn, for cracked top 
stress block with procedure C

>b

>bt

h/b

where >t > trans

h/2

>b

>bt

h/b

where >t < trans

>bt

>t<t

2(b-t)

Strain at boundary of top stress block

2t

X

2θn

ctn

<t = [>bt - >tcos2(b-t)] / sin2(b-t)
ctn =   <tsin2(θn-t)+ >tcos2(θn-t)

N

Having obtained the strains in the reinforcement directions at the boundaries of the stress 
blocks, the strains at the levels of the reinforcement can be calculated.

Calculating reinforcement strains, tn and bn, with procedure C

h/2

ztn

zbn

ctn
tn

cbn
where >t < trans

bn

ctn

ztn

zbn

tn

cbn

where >t = trans

h/2
bn

Determination of stress in reinforcement

The stress in the reinforcement is calculated from the strain; a tri-linear stress-strain relation is 
used for the reinforcing steel in both tension and compression, for which the salient points are 
code-dependent. If the bar is to take compression, the calculated stress in the reinforcement is 
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reduced by the layer’s concrete stress in the reinforcement direction to allow for the displaced 
concrete.

Calculation of area of reinforcement

If the force and stress are of opposite signs then the calculation for this particular value of α is 
unsuccessful. If the force required to be taken by the reinforcement is of the same sign as the 
stress calculated in that steel, the area is calculated by dividing the forces by the stress; the area 
is limited to half the section thickness. The specified minimum area is used as appropriate. 
Finally, the four reinforcement areas are summed to give a total that is compared with the totals 
resulting from other iterations: the reinforcement areas with the smallest total are output by the 
program, with compressive reinforcement identified by negating its area, following GSA’s sign 
convention.

Non-iterative technique

To speed up the calculation, an option is available, where the loading is primarily either in-plane 
or out-of-plane, to adopt a non-iterative technique. This approach is likely to lead to slightly more
conservative results. The user can choose to use this approach in appropriate situations and can 
specify a total area of reinforcement, as a percentage of the cross-sectional area, above which a 
rigorous, iterative solution is used.

Primarily in-plane

The applied loads are taken as primarily in-plane if the eccentricities of the moments equal the 
minimum eccentricity for each component for which there is a corresponding force.

Where loads are primarily in-plane, is taken as 0.5. If the maximum compressive stress in the 
layers exceeds its strength, the section is unreinforceable; otherwise, reinforcement areas are 
calculated.

Primarily out-of-plane

The applied loads are taken as primarily out-of-plane if the more compressive principal is less 

than . Tensile normal stresses do not prevent use of this technique.

Where loads are primarily out-of-plane, the central layer is unstressed and the value of is 

initially set to . If the maximum compressive stress in the compressive outer layers exceeds 
the strength, the section is unreinforceable. If compression reinforcement is required, the 
iterative solution is used. Otherwise, a reduced value of  is calculated so that the relatively 
more highly stressed of the top and bottom layers is just below its compressive strength, while 
remaining in equilibrium with the applied moments; limits on the change in are imposed. The 
stresses are recalculated for this value of , and a further revised value of calculated. If the 
change in exceeds 0.01, the stresses are recalculated again. Reinforcement areas are 
calculated for the final value of .

Distribution of reinforcement

RCSlab calculates the area of reinforcement required at each node. Since the reinforcement 
distribution corresponds to the force and moment distributions with their concentrations and 
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peaks, there may be locations where no satisfactory reinforcement arrangement can be 
determined because the concrete is overstressed in shear. If these points, which are left black 
when contouring, are isolated, they can probably be ignored but larger areas will require 
changes to the geometry or material properties.

It is also usually appropriate to average values of reinforcement in areas of great change. For 
example, reinforcement requirements in flat slabs can be averaged over the central half of the 
column strips, the outer portions of the column strips and the middle strips, as when following 
code methods. It is hoped that future developments within GSA will help automate this averaging
process.
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Rotation at the end of a bar (beam)
Force

Point load at position 

From Roark10, the end rotations for a point load are

Letting the distance from end 1 be  these equations can be rewritten

Varying load from with intensity  and .

Using the equations above from Roark the end rotations for a point load at are

Using these and integrating over the element gives

(1)

(2)

10 Roark Formulas for Stress and Strain, Table 3 (1.e)
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The load intensity is a linear function in the range 

Or

(3)

where

Substituting equation 3 in 1 for end 0

so
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Substituting equation 3 in 2 for end 1

so

Moment

Point moment at position a

From Roark11, the end rotations for a point load at  are

Letting the distance from end 1 be  these equations can be rewritten

11 Roark Formulas for Stress and Strain, Table 3 (3.e)
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Varying load from  with intensity and .

Using the equations above from Roark the end rotations for a point moment at  are

Using these and integrating over the element gives

(4)

(5)

As with the forces the moment intensity can be written as

(6)

where

Substituting equation 6 in 4 for end 0

so
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Substituting equation 6 in 5 for end 1

so

Thermal

For a thermal gradient  applied to a beam the curvature is

So the radius of curvature is

Assuming a circular arc the rotation at the end is perpendicular to the radial lien of the arc. This 
means that the angle of the radial line to the beam original configuration is
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And

Pre-stress

Only the tendon per-stress P with an offset o will give rise to a rotation. The effect of this is a 
uniform moment over the length of the element of

This case can then be treated as above for a patch moment.

Beam distortion

A beam distortion can be a displacement discontinuity or a rotation discontinuity. For a 
displacement discontinuity of at the rotation is then

For a rotational discontinuity of at  the rotation is calculated by defining a displacement of 

at then the angle and end 0 and at end 1 gives the set of equations

Substituting for in the last equation gives

Substituting for terms in 
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Then the rotation angles at end 0 and 1 are
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Second Moments of Area & Bending
The second moments of area are defined as

For symmetric sections Ixy is zero.

For uniaxial bending or bending about principal axes

When there is biaxial bending these have to be modified to

As the second moments of area form a tensor these can be rotated to different axes using a 
rotation matrix

Or

Or in terms of double angles
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Shear Areas
Thin-walled Sections

The effect of shear deformation on the results of a structural analysis is usually negligible. Where
it is more significant, it will usually suffice to make a simple approximation to the shear 
deformation area of members with a cross-section such as those shown in Fig 1. The usual 
approximation is, by analogy with a simple rectangular beam, to take 5⁄6 or 11⁄12 of the total web 
area (overall depth × web thickness).

For those rare structures where the shear deformation is very important it may be necessary to 
use a more exact value for the area. This Note gives formulae for F for the cross-sections of Fig.1 
where
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These were derived from the virtual work formula, shear deflection per unit length = . 

Here is the shear flow at any point at the middle of the wall thickness, the shear stress is 
assumed constant across the wall thickness , and the integration extends over the whole cross-
section.

To see what the formulae mean in practice, they were applied to steel sections taken from the 
handbook with the results shown in the table below. In a web or flange with varying thickness,  

was assumed constant at its average value. The smaller values of in a range correspond to 
cross-sections with squarer aspect ratios. Samples only of UBs, UCs and channels were taken.

It can be seen that, for sections with top and bottom flanges bending, as nature intended, in 
their strong direction, the usual approximation is satisfactory (although it should be noted that d 
is the distance between flange centres, not overall depth). For the more bizarre sections used in 

bending, values of  are seen to be lower than expected, especially when they are perversely 
bent in their weakest direction.

Section F

Bending in strong direction

UB 5.72 to 5.81

Joist 5.17 to 5.78

UBP 5.25 to 5.28

UC 5.28 to 5.53

SHS 5.0

RHS 5.0 to 5.49  

Channel 5.06 to 5.60

Angle 3.68 to 4.62 

Tee from UB 4.78 to 4.97

Tee from UC 4.11 to 4.35

Cruciform 5

Bending in weak direction

Channel 2.12 to 3.78

RHS 4.02 to 5.0 )

Angle 2.55 to 3.68 (for d⁄b = 0.5 to 1)

I’s, T’s, & cruciform 5.0

With regard to calculating shear stresses, the exact distribution is not normally required, or even 
usable, because Codes of Practice base the shear strength on an allowable average shear stress 
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calculated on the total net area . However, the shear distribution is sometimes required to 
design welds or concrete stitches, and, since it was found in the process of deriving the formulae

for , formulae for the stress factors and  are given. Here,

is the shear flow in the web at the junction with the flange, and

is the maximum shear flow in the web, in which  is the shear force at the section.

For circular annuli, assuming that the stress is constant across the wall thickness , both the 
deflection and maximum stress can be obtained using a shear area of half the actual area, that is

 where is the mean radius.

Formulae

Shear deformation area

Type A1

Types A2 & A3

Special case of A3 with constant wall thickness so that 

Type B1

© Oasys Ltd 
2021 162



Oasys GSA

Special case of B1 with constant 

Types B2 & B3

Special case of B3 with constant thickness 

Type C

Stress Factors

Type A1, A2 & A3

Type B1, B2 & B3

Solid Sections

For rectangular beams it is usually sufficiently accurate to take the shear area for deflection as

 where  is the breadth and  the depth of the section. The corresponding maximum 

shear stress is . It should be noted however that for wide beams the maximum shear 
stress is underestimated by this formula: for a beam with an aspect ratio of 1 the maximum 
stress is 12.6% higher. (For a beam with an aspect ratio of 50 (for example a slab) the maximum 
stress is about 2000% higher but, as this is a Poisson’s ratio effect, it is difficult to believe that this
has any practical significance!12)

12 Timoshenko, S.P. and Goodier, J.N. Theory of elasticity. 3rd edition. McGraw-Hill, 1970.
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For circular sections the shear area for deflections is

where is Poisson’s ratio and  the radius. The expression is very insensitive to the value of . 
The maximum shear stress is given by

which varies from

 for 

to

 for 

with

 for 

This item was written by John Blanchard and Ian Feltham for Feedback Notes [an Ove Arup & Partners internal 
publication] (1992 NST/21) originally published in October 1992. Incorporates 1996NST/10 and is reproduced 
here with permission.

© Oasys Ltd 
2021 164



Oasys GSA

Storey Displacements
Storey displacement are calculated from

Where i are the nodes in the storey and n is the number of nodes in the storey. The rotations are
the calculated relative to the centre of mass, cm.

The position of node i relative to the centre of mass is

the distance from the centre of mass is

and the component of displacement giving rise to rotation is

The rotation of the storey is then defined as
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Sub-model Extraction
This feature allows a sub-model to be extracted from GSA, so that the sub-model can be 
investigated in more detail. There are two aspects to the sub-model: the elements that form the 
sub-model and the tasks that are to be associated with the sub-model.

The nodes that form the sub-model and the nodes that form the boundary between the sub-
model and the remainder of the model are identified. A new model is then created for the sub-
model. Nodes on the boundary are fully restrained. Properties are copied directly. Constraints 
and loading are updated to include only those associated with the sub-model. Tasks are updated
based on the tasks selected for the sub-model.

Static analysis tasks

For static analysis tasks the displacements at the boundary nodes are extracted for each analysis
case. These are then applied in a new load case as settlements, and the analysis cases updated 
to include these settlements.

Modal dynamic and Ritz analysis cases

For dynamic tasks there is the option of Local or Global response.

Local

If the mode is predominantly local it may be more appropriate to consider the boundary of the 
sub model as fixed and to carry out a modal analysis of the sub-model. In this case the model 
extraction is straightforward. In this case the analysis task is copied directly

Global

It is not possible to carry out a sub-model model analysis when the mode is global. In this case 
the modal results are used to create a set of static loads

The modal analysis of the full model gives us eigenvalues and eigenvectors which satisfy

This can be rearranged in the form

Which we can consider as a static (pseudo modal) analysis of

where
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When extracting the sub-model the frequency (eigenvalue) and mode shape (eigenvector) can be
used to create a set of node loads:

The modal task in the full model is mapped to a static task in the sub-model. As for the static 
analysis the displacements at the boundary nodes are used to determine settlements at the 
boundary nodes and the inertia loads are saved as node loads. The static analysis of these loads 
will then recover the mode shapes of the original model.

Response spectrum analysis

Response spectrum analysis is a combination of modal results scaled to match a given response 
spectrum. Extracting the modal results are static load cases means that the dynamic details are 
lost to the sub-model. To overcome this problem the response spectrum tasks are mapped to 
pseudo response spectrum tasks. A pseudo response spectrum task assumes that a static 
analysis case represents a mode shape. The dynamic details are supplied directly to the task in 
the form of frequency, modal mass, and effective masses. When a response spectrum task is 
extracted from the full model these details are recovered from the modal analysis and included 
in the pseudo response spectrum analysis task.

Given a shape from a pseudo modal analysis the scaling for each mode i, for excitation in the j 
direction is:

Where

If the pseudo modal analysis is carried out using the static procedure above, and the frequency 
and participation factor are known from the primary model, then the modal contribution to the 
response spectrum analysis can be estimated. Thereafter the combination is just as for any 
normal modal analysis.
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Torce Lines
GSA gives the option of plotting ‘Torce lines’, which are similar to thrust lines but include the 
effects of torsion. They are equal for plane frames.

Good structural design requires a clear thinking head, well-presented information, and some 
creative flair. At the detailed level designs progress by iterative evolution and the quality of the 
design depends on the effectiveness of the interaction between the designer and the 
information which describes the behaviour of the structure in the current cycle. In today’s world 
this information is almost always presented by a computer. Graphical plots of the parameters 
used in the numerical analyses are often ergonomically inefficient, meaning that although they 
contain the information they fail to transmit insight or understanding into the head of the 
designer. Better representations are needed.

For many applications thrust lines meet this need. They are useful where members are 
subjected to combined axial load and bending, particularly for compression members made of a 
material that takes no tension. In these cases the adequacy of the member can often be 
reasonably described by a limit on the eccentricity of the thrust line. Thrust lines are frequently 
used by the designers of masonry arches.

A thrust line is the locus along a member of points drawn at an eccentricity of

from the centroidal axis of the member, where is the moment and the axial force. It 
follows the line of action of the force carried by the member and two related points follow from 
this:

 No scale is needed when drawing a thrust line. It is not a diagram superimposed on a 
view of a structure. It occupies the position where it is shown.

 It is not subject to any sign conventions.
However the key feature of the thrust line which makes it so useful is that it is a complete 
description of the forces carried by the member. Because of this completeness property a 
designer can, with no loss of accuracy, substitute a thrust line, which he or she can visualise, for 
the combination of the three numbers representing the axial force, moment, and shear, which 
remains stubbornly abstract.

In a computer model of a structure the thrust line is derived from the forces in a member but

because it occupies the actual position of the force transmitted through the structure being 
modelled it follows that its position remains fixed in space even if the member which ‘supports’ it
is moved, providing the movement of the member does not change the force being transmitted. 
This can be referred to as the invariance property of thrust lines.

The above statements refer to thrust lines in two dimensions, as in a plane frame model. Thrust 
lines can also be drawn in three dimensions but unfortunately in shifting up a dimension they 
lose both their completeness and invariance properties and so they lose their usefulness to the 
designer.
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The general state of force in a section of a member in three dimensions cannot be reduced to a 
single force, but it can be reduced to a combination of a force and a torque or, more completely, 
to any one of an infinite number of force/torque pairs. There is just one force/torque pair, 
hereafter referred to as the torce, for which the force axis and the torque axis are parallel. In 
three dimensions it is torce lines that have the completeness and invariance properties and so it 
is torce line which can be used by designers to visualise structural actions.

The position of a torce line is derived from the forces in a section of a member as follows

The resultant shear force, , and its angle to the z axis, , are given by

The angle between the member axis and the thrust line is given by

The torque, , of the torce is resolved into moments about the three member axes. The 

component about the x axis is the torque in the member. The other two components modify

the bending components  and .

Because the force components of the torce (as opposed to the moment components) are the 
same as those on the member, the thrust line and the torce are parallel.

Hence

Therefore

Eccentricities of the torce,   and , are given by
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hence

How do torces behave? A torce is a unique representation of the force state in a section of 
structure. Torces can be added or subtracted. There is always a unique result. Note that if two 
torces lie in the same plane their addition or subtraction is not necessarily in that plane. In three 
dimensions four forces on a body in equilibrium are necessarily coincident. The same is not true 
for torces. Consider four coincident torces in equilibrium. If one of the torces is translated 
without changing its direction then the body is subjected to a moment. Equilibrium can be 
restored by adjusting the torques in the other three torces. Hence equilibrium is achieved with 
four non-coincident torces.

Often it will be known that one or more of the torces have zero torque. For example gravity 
imposes zero torque on a body. How many torqueless torces are needed to restore the 
coincidence rule? The answer is four. This is the same as the four forces on a body rule. If just 
one of the four carries a torque it can be resisted by a combination of lateral shifts of the other 
three forces and coincidence is lost. The usefulness of the concept of coincidence is limited to 
statements such as: The sum of two coincident torces, one of which is torqueless, is coincident 
with its components.

For the designer the lesson from this is that, unless a structure is conceived as being truly three 
dimensional, it is often better to analyse it as a two dimensional plane frame during the design 
evolution phase so the coincidence rule can be used to understand what is driving the 
magnitudes of the forces.

This item was written by Angus Low for Feedback Notes [an Arup  internal publication] (1999 NST/7) and is 
reproduced here with permission
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Torsion Constant
In structural elements capable of sustaining torsional moments it is necessary to define a 
constant to specify the ‘twisting stiffness’.

This term is referred to as the Torsion Constant. The following notes offer guidance on how to 
calculate the Torsion Constant. More detailed information may be found in the standard texts.

In the literature there is some confusion over the symbol used to represent the Torsion 

Constant. In many texts it is referred to as . Elsewhere the symbol is used in an effort to 
distinguish the Torsion Constant from the polar moment of inertia. In GSA and in these notes the

symbol  is adopted.

If a circular bar of constant cross section and of length  is subjected to a constant torque , the 

angle of twist  between the ends is

where  is the shear modulus and the polar moment of inertia.

When the cross section of the bar is non-circular, plane cross sections do not remain plane after 
deformation and warping will occur. Nevertheless the above equation can still be used with good

accuracy, but I should be taken as the appropriate Torsion Constant  as defined below.

Saint Venant’s Approximation

Saint Venant represented the torsion constant (J) of a solid section by a function relating the 
already known characteristic values of a cross section thus

For narrow rectangles  (i.e. thin plates):

which reduces to

For circular sections
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which is the polar moment of inertia.

It can be shown that for members composed of thin rectangles, the torsion constant is equal to 
the sum of the J-values of component rectangles, except when the section is closed or ‘hollow’.

Rectangular Sections

The torsion constant J is given by

where  is a constant depending on the ratio of , which can be read either from the 
table below. Linear interpolation may be used for intermediate values.

or from the graph

Note that K converges to 1⁄3 for narrow rectangles.

Alternatively

generally, or if then

and so
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1.0 0.141 1.5 0.196 2.8 0.258 10.0 0.312

1.1 0.154 1.8 0.216 3.0 0.263 ∞ 0.333

1.2 0.166 2.0 0.229 4.0 0.281  

1.3 0.175 2.3 0.242 5.0 0.291

1.4 0.186 2.5 0.249 7.5 0.305
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Other Sections

The following table from Ghali and Neville (1978) gives values of the torsion constant (J) for 
various cross-sectional shapes.

where is the area enclosed by a line through the centre 
of the thickness and the integral is carried out over the 
circumference
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All the above assumes that the material is linear elastic.

Factored Values for Concrete

In the case of concrete the Torsion Constant (J) needs to be modified for the following reasons:

 The above formulae do not consider cracking of the concrete.

 There is the practical difficulty of reinforcing for torsion.

For concrete, the actual value ranges from 0.15 to 0.5 of the theoretical (linear elastic) value. 
BS8110 Part 2 Clause 2.4.3 recommends that half the linear elastic value (calculated above) is 
used in an analysis.
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Transformations
There are two type of transformation in GSA: transformation of coordinates from global to local 
axes and vice versa, and the transformation of results such as displacements, forces, and 
stresses. The coordinate transformation requires a rotation + translation while the displacement 
transformation requires only a rotation.

The rotation can be defined by a 3 × 3 direction cosine matrix, so the transformation is

Or

And the reverse transformation is then

The axis transformation can be considered as

And the reverse transformation as
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